

The AZUR project Development of autonomous navigation software for urban operation of VTOL-type UAV

Yoko Watanabe

Dept. of Systems Control and Flight Dynalics (DCSD)

THE FRENCH AEROSPACE LAB

retour sur innovation

MAVRC – Garden Workshop 02/ 07 / 2015

Context

Needs

- Increasing demands of operational UAVs for missions in a complex environment
 - Infrastructure inspection (railway, pipeline, dam, etc.)

© Novadem

- Scientific mapping (archaeology, agriculture, etc.)
- Disaster relief and recovery
- Reconnaissance and surveillance ...
- UAV flight safety for such operations
- Limited skills and workload for UAV operator

Autonomous navigation system for UAV operations in a complex environment (obstacles, wind gust etc.) with onboard perception capability

© Yamaha

PR AZUR (2011-2014)

✤ AZUR (<u>A</u>utonomie en <u>Z</u>one <u>UR</u>baine)

Objectives

- Development of onboard navigation software kit for "rurban" operation of VTOL-type UAVs
- Flight experiments and validation of each developed navigation function
- Realization of autonomous mission operation

PR AZUR (2011-2014)

Capitalization of different competences of ONERA-TIS

- UAV guidance, navigation and control (DCSD-Toulouse, DCPS-Palaiseau)
- Onboard perception, image processing (DTIM-Palaiseau)
- Mission and path planning (DCSD-Toulouse)
- Operator interface (DCSD-Salon de Provence)
- System implementation and UAV flight operation (DCSD-Toulouse)

Navigation functions in the AZUR software

Mission Scenario

Preparation phase

- Data acquisition from high altitude
- Data processing on ground
- 1. Environment mapping
- 2. Mission planning → PEA Action, etc.
- 3. Flight path planning

Execution phase

- Mission operation at low altitude close to obstacles
- 4. Onboard mapping
- 5. Adaptation of current flight plan
- 6. Safe flight under GPS occlusion risk, wind gust...
- 7. Operator intervention

1. Environment mapping

- Geometric 3D modeling with high precision
 - LiDAR + Vision-aided trajectography [1]
 - Refinement of GPS/INS-estimated trajectory by bundle adjustment
 - LiDAR data projection with the refined trajectory

[1] M. Sanfourche, J. Delaune, J. Israel, G. le Besnerais, H. de Plinval, P. Cornic, A. Treil, Y. Watanabe and A. Plyer, "Perception for UAV : Vision-based navigation and environment modeling", ONERA Aerospace Lab Journal, 2012.

1. Environment mapping

Geometric 3D modeling with high precision

- LiDAR + Vision-aided trajectography [1]
 - Refinement of GPS/INS-estimated trajectory by bundle adjustment
 - LiDAR data projection with the refined trajectory

Semantic scene interpretation

- Terrain type classification (e.g. tree/building) [2]
- Interactive learning on orthomosaïc images
- Online domain adaptation on onboard image sequence

[1] M. Sanfourche, J. Delaune, J. Israel, G. le Besnerais, H. de Plinval, P. Cornic, A. Treil, Y. Watanabe and A. Plyer, "Perception for UAV : Vision-based navigation and environment modeling", ONERA Aerospace Lab Journal, 2012.

[2] B. Le Saux and M. Sanfourche, "Rapid Semantic Mapping: Learn Environment Classifiers on the Fly," IEEE/RSJ IROS, 2013.

3. Safe flight path planning

Path planning under localization uncertainty [3]

- Collision risk evaluation with « uncertainty corridor » → Search for a <u>safe flight path</u> Ξ²⁰₁₀
- Taking into account different localization modes 20 (GPS, INS-only, visual odometry, landmark...) and their availabilities (GPS occlusion, landmark visibility, etc.)

Goal B

100

Collision!

ONERA

Obstacle

Start A

.20

n

[3] Y. Watanabe, S. Dessus and P. Fabiani, "Safe Path Planning with Localization Uncertainty for Urban Operation of VTOL UAV," American Helicopter Society Annual Forum, May 2014.

3. Safe flight path planning

Path planning under localization uncertainty [3]

- Collision risk evaluation with « uncertainty corridor »
 → Search for a safe flight path
- Taking into account different localization modes (GPS, INS-only, visual odometry, landmark...)
 and their availabilities (GPS occlusion, landmark visibility, etc.)
- Navigation strategy planning
 - Graph search in 4D space (3D space + localization mode) ← deterministic search algorithms (A*, Theta*)
 - Minimization of flight distance as well as localization uncertainty

Cost function = Volume of the uncertainty corridor

[3] Y. Watanabe, S. Dessus and P. Fabiani, "Safe Path Planning with Localization Uncertainty for Urban Operation of VTOL UAV," American Helicopter Society Annual Forum, May 2014.

3. Safe flight path planning

- Path planning under localization uncertainty
 - Evaluation with the VTOL UAV Obstacle Field Navigation (OFN) benchmark*
 - Participation and contribution to the benchmarking working-group (US Army, UMN, DLR, CMU, GaTech, etc.)[®]

* http://www.aem.umn.edu/people/mettler/projects/AFDD/AFFDwebpage.htm

4. Onboard mapping

✤ 3D geometric modeling

- LiDAR
 - Data projection by using GPS/INS-estimated trajectory (w/o refinement)
 - Data fusion through ICP (iterative closest point)
- Stereo visual SLAM + Kinect [4]

ONER

- Keyframe-based real-time visual SLAM (simultaneous localization and mapping
- Combined with Kinect sensor in case of having poor visibility condition (mixed outdoor-indoor flight)

 [4] M. Sanfourche, V. Vittori and G. Le Besnerais,
 "Evo: A realtime embedded stereo odometry for MAV applications," IEEE/RSJ IROS, 2013.

5. Onboard flight trajectory adaptation

Flight path replanning

- Supervision
 - Feasibility of execution of current flight plan
 - Possibility of performance improvement (= cost reduction)
 - ← Position, localization uncertainty, environment map
- Replanning
 - Sampling-based search (RRT*/# algorithms etc.) to obtain *sub-optimal* solution in real-time
 - Search tree initialization with an executable part of the current path

Reactive obstacle avoidance

- V(elocity)-obstacle aooroach
- Analysis of vehicle stability when switching modes (mission → avoidance) hybrid system modeling

[5] Y. Watanabe, A. Piquereau, P. Chavent, R. Mampey, P. Fabiani and M. Sanfourche, "The ReSSAC unmanned helicopter: towards a safe autonomous operation in an urban environment," AHS Annual Forum, 2012.

[5] Y. Watanabe, A. Piquereau, P. Chavent, R. Mampey, P. Fabiani and M. Sanfourche,
 "The ReSSAC unmanned helicopter: towards a safe autonomous operation in an urban environment," AHS Annual Forum, 2012.

Optical flow-based visual odometry

- Automatic waypoint tracking flight with GPS cut-off
- 10 m of drift after 2 min. of GPS signal loss

ONERA

Closed-loop

Stereo visual SLAM [4]

- 6D camera pose estimation by image matching
- Feature points tracking ~ absolute measurement
- High estimation precision
 - → 1st on the KITTI benchmark* in 2013

[4] M. Sanfourche, V. Vittori and G. Le Besnerais, "Evo: A realtime embedded stereo odometry for MAV applications," IEEE/RSJ IROS, 2013.

ONERA

Pitch

7. Operator intervention

Haptic interface for obstacle field navigation

- Inform an operator with obstacle proximity by using force-feedback [6]
- Evaluation using LabSIM cockpit / flight simulator (DCSD-Salon de Provence)

ONERA

[6] L. Binet and T. Rakotomamonjy,

avoidance in helicopter flight,"

and Sapce Sciences, 2015.

"Using haptic feedbacks for obstacle

European Conference for Aeronautics

System integration

System integration

Onboard software architecture

- OROCOS (Open RObot Control Software)
 - Component-based architecture
 - Real-Time Toolkit
- « Interface Implementation » pattern
 - Easy to perform unit-test of an implementation
 - Interchangeability of
 - components
 - deployment modes (flight, simulation, data replay)
 - runtime frameworks
- Implementation of developped navigation functions
 - Environment mapping and path planning
 - Navigation without GPS
 - Visual servoing
 - Target detection and tracking...etc.

Prototype of onboard software architecture to host different algorithms/sensors

Conclusion and Perspectives

Conclusion

- Development and flight validation of different « Onboard navigation functions »
 - Environment mapping and safe path planning
 - Vision-aided navigation (visual odometry, visual SLAM)
 - Visual servoing for relative navigation without GPS
 - Obstacle avoidance guidance...
- Development of onboard software architecture on the P/L processor
 - Interface and synchronization with flight avionics
 - « Interface-Implementation » pattern for interchangeability
- No demonstration of autonomous operation of a complete mission with an "integrated" navigation software kit ⁽²⁾

Conclusion and Perspectives

Perspectives

- Demonstration of autonomous operation of a complete mission with an "integrated" navigation software kit
 - PRI SNCF (2015-2019) : Infrastructure inspection
- Evolution of the onboard navigation functions
 - Navigation and guidance strategy planning

 → Joint research ONERA/DLR (2015-)
 - Vision-based navigation / guidance / control
 - Automatic indoor/outdoor flight
 - See & Avoid ...
 - System reconfiguration in case of anomaly
 - → PRF DROPTER (2016-2019)
 - Integration of haptic interface into GCS
 - → PR CONTAHCT (2016-2018)

Utilization, Evaluation and Evolution of the onboard software architecture

Thank you & Questions?

