

Workshop ISAE 2023 – Heterogeneous capsule-like structure

Emanuele Arcese

Chairmain : Emanuele Arcese

Co-chairman : Jérôme Simon

Geometry of the case

The geometry is symmetric with respect to the z-axis. It consists of a PEC sphere-cylinder-sphere (each half-sphere is connected to the cylinder ensuring standard tangential constraints), of length L = 0.25 m and radius R = 0.005 m, covered by two layers of constant thicknesses: the inner layer, of thickness $e_1 = 0.016$ m, the outer layer, of thickness $e_2 = 0.004$ m. All geometry sizes are showed in the figures below.

The inner and outer layers are filled by homogeneous, isotropic media with relative constitutive parameters $\varepsilon_1 = 1 - 0,397 j$, $\mu_1 = 1 - 0,4 j$; $\varepsilon_2 = 1 - 0,143 j$; $\mu_2 = 1$, respectively.

The aim is to analyze the electromagnetic scattering by this structure in air in **two configurations** as follows:

- 1. rectangle-section toroid filled by a medium with piecewise constant permittivity is prescribed in the outer layer;
- 2. rectangle-section toroid filled by a "heterogeneous" medium with non-constant permittivity is prescribed in the outer layer.

The time dependence is assumed to be $e^{j\omega t}$.

Configuration #1 : piecewise constant transition

• **Configuration #2** : heterogeneous transition

Configuration #1

In this configuration the scattering structure features a piecewise constant transition (the red area) in ε_2 of the homogenous medium in the outer layer, occurring along the z-axis over a distance l = 0,06 m and centered around the ρ -axis. The resulting transition toroid is partitioned into $N_d = 5$ non-overlapping sub-domains having the same shape. Each sub-domain, referred to as region 3, 4, 5, 6 or 7 in the figure below, has a rectangle section of size e_2 and $l/N_d = 0,012$ m.

In the outer layer, the relative permeability is kept constant and equal to 1; i.e. $\mu_m = \mu_2 = 1$ with $m \in [3,7]$; while the relative permittivity constants are defined as follows.

region #	$arepsilon_m$
3	1, 6 – 0, 115 <i>j</i>
4	2, 8 – 0, 059 <i>j</i>
5	3, 7 – 0, 017 <i>j</i>
6	2, 8 – 0, 059 <i>j</i>
7	1, 6 – 0, 115 <i>j</i>

Configuration #2

In this configuration the scattering structure features a heterogeneous transition (the red area) in ε_2 of the homogenous medium in the outer layer, occurring on the $\rho - z$ plane within a rectangle-section region of size l = 0.06 m and e_2 , centered around the ρ -axis.

In the outer layer, the relative permeability is kept constant and equal to 1; i.e. $\mu_3 = \mu_2 = 1$; while the relative permittivity parameters are defined as follows :

• $\varepsilon_2 = 1 - 0,143 j;$

otherwise.

Results to be provided

- We are seeking the **monostatic RCS** (defined as $\text{RCS} = \lim_{r \to \infty} 4\pi r^2 \frac{|E^{scattered}(r)|^2}{|E^{inc}|^2}$) in both configurations for the following two z cases.

 - Case "BANG" :
 - $\begin{cases} \theta \in [0^{\circ}, 90^{\circ}] \\ \phi = 0^{\circ} \end{cases}$ in the standard spherical coordinate system (the figure shows spherical (r, θ, φ) and cylindrical (ρ, φ, z) coordinate systems), with angular step $\Delta \theta = 0.1^{\circ}$ (i.e. 901 angles);
 - wave frequency f = 5 GHz;
 - $\theta\theta$ and $\varphi\varphi$ polarization;
 - Case "BFRE" :
 - $(\theta, \varphi) = (0^{\circ}, 0^{\circ});$
 - wave frequency ranging from 4 GHz to 6 GHz, with frequency step $\Delta f = 0.02$ GHz (i.e. 101 frequencies);
 - $\theta\theta$ and $\varphi\varphi$ polarization.
- Nota Bene : For results comparison, a reference monostatic RCS, for the two above cases, has to be also provided. In this case, the simulation is performed using the two-layer structure, only consisting of the two homogeneous, isotropic media without any permittivity transition region (see figure below).
- Expected results shall be stored in six ASCII files named RCS capsule case config.res, with case being one of the keywords: bang or bfre; and config being one of the keywords: pwconst, hetero or ref.
- Each file shall have six columns : angle θ in degrees (or frequency in GHz); RCS in db.m² for $\theta\theta$ – polarization; ٠ phase of the complex RCS in degrees for $\theta\theta$ – polarization; ε_2, μ_2 RCS in db.m² for $\varphi \varphi$ – polarization; ٠ ε_1, μ_1 phase of the complex RCS for $\varphi \varphi$ – polarization. Workshop ISAE 2023

28/10/2022

5