Dynamic Aeroelastic Scaling of the CRM Wing via Multidisciplinary Optimization

Joan Mas Colomer
2nd year PhD Student at ONERA and ISAE

Nathalie Bartoli, Thierry Lefebvre, Sylvain Dubreuil (ONERA). Joseph Morlier (ISAE)

WCSMO12

Braunschweig, Germany
June 5, 2017

This work has been supported by the EU project 658570 - NextGen Airliners funded by Marie Skłodowska-Curie actions (MSCA).
Reference aircraft
Introduction - Similarity and Optimization

Reference aircraft

Scaled model

Thickesses → Passive action on [K] & [M]
Moving Masses →
Active action on [M]

PZT → Active action on [K]

www.dai-kong.com
Introduction - Similarity and Optimization

Reference aircraft

Scaled model

Thicknesess \rightarrow Passive action on $[K]$ & $[M]$
Moving Masses \rightarrow
Active action on $[M]$
PZT \rightarrow Active action on $[K]$

www.dai-kong.com
Introduction - Similarity and Optimization

Reference aircraft

Scaled model

- Thicknesses \rightarrow Passive action on $[K]$ & $[M]$
- Moving Masses \rightarrow
- Active action on $[M]$
- PZT \rightarrow Active action on $[K]$

www.dai-kong.com
Reference aircraft

Scaled model

Thicknesses → Passive action on [K] & [M]
Moving Masses → Active action on [M]
PZT → Active action on [K]

www.dai-kong.com
Introduction - Similarity and Optimization

Reference aircraft

Scaled model

Thickeneses \rightarrow Passive action on $[K]$ & $[M]$

Moving Masses \rightarrow

Active action on $[M]$

PZT \rightarrow Active action on $[K]$

www.dai-kong.com
Introduction - Dynamic Aeroelastic Similarity

Reference aircraft mode shape

Optimized scale demonstrator mode shape

* [Richards et al., AIAA/ATIO Conference, 2010]
Outline

1. Tools
2. Dynamic Aeroelastic Scaling
3. CRM wing modal optimization
4. Aerodynamic Flutter Optimization
5. Conclusion
6. Perspectives
1 Tools

2 Dynamic Aeroelastic Scaling

3 CRM wing modal optimization

4 Aerodynamic Flutter Optimization

5 Conclusion

6 Perspectives
- Nastran 95*: Normal Modes and Flutter Analysis
Tools

- Nastran 95*: Normal Modes and Flutter Analysis
- Panair/a502†: Static aerodynamics
Tools

- Nastran 95*: Normal Modes and Flutter Analysis
- Panair/a502†: Static aerodynamics
- OpenMDAO‡ Framework
Tools

- Nastran 95*: Normal Modes and Flutter Analysis
- Panair/a502†: Static aerodynamics
- OpenMDAO‡ Framework
- Optimizer: SLSQP (Gradient-based, from Scipy library)
Tools

- Nastran 95*: Normal Modes and Flutter Analysis
- Panair/a502†: Static aerodynamics
- OpenMDAO‡ Framework
- Optimizer: SLSQP (Gradient-based, from Scipy library)

* [github.com/nasa/NASTRAN-95]
† [pdas.com/panair.html]
‡ [Gray et al., AIAA/ISSMO, 2014]
1 Tools

2 Dynamic Aeroelastic Scaling

3 CRM wing modal optimization

4 Aerodynamic Flutter Optimization

5 Conclusion

6 Perspectives
Dynamic Aeroelastic Scaling

Aeroelastic equations of motion:

\[
[M]{\ddot{x}} + [K]{x} = [A_k]{x} + [A_c]{\dot{x}} + [A_m]{\ddot{x}} + [M]{a_g}
\]

[Ricciardi et al., Journal of Aircraft, 2014]
Dynamic Aeroelastic Scaling

Aeroelastic equations of motion:

$$[M]\{\ddot{x}\} + [K]\{x\} = [A_k]\{x\} + [A_c]\{\dot{x}\} + [A_m]\{\ddot{x}\} + [M]\{a_g\}$$

In modal coordinates ($\{x\} = [\Phi]\{\eta\}$):
Dynamic Aeroelastic Scaling

Aeroelastic equations of motion:

\[[M] \{\ddot{x}\} + [K]\{x\} = [A_k]\{x\} + [A_c]\{\dot{x}\} + [A_m]\{\ddot{x}\} + [M]\{a_g\} \]

In modal coordinates (\{x\} = [\Phi]\{\eta\}):

\[
\]
Dynamic Aeroelastic Scaling

Aeroelastic equations of motion:

\[
[M]\dddot{x} + [K]x = [A_k]x + [A_c]\dot{x} + [A_m]\ddot{x} + [M]a_g
\]

In modal coordinates (\(\{x\} = [\Phi]\{\eta\}\)):

\[
[\Phi]^T[M][\Phi]\dddot{\eta} + [\Phi]^T[K][\Phi]\{\eta\} = [\Phi]^T[A_k][\Phi]\{\eta\} +

[\Phi]^T[A_c][\Phi]\dot{\eta} + [\Phi]^T[A_m][\Phi]\ddot{\eta} + \frac{1}{b}[\Phi]^T[M]a_g
\]

[Ricciardi et al., Journal of Aircraft, 2014]
Dynamic Aeroelastic Scaling

Adimensionalize with reference quantities:

\[
\langle \tilde{m} \rangle \{^* \eta \} + \langle \tilde{m} \tilde{\omega}^2 \rangle \{ \eta \} = \frac{V^2}{b^2 \omega_1^2} \frac{gb}{V^2} \langle \tilde{m} \rangle [\Phi]^{-1} \{ \tilde{a}_g \} \\
+ \frac{1}{2} \frac{\rho S b}{m_1} \frac{V^2}{\omega_1^2 b^2} \left(\left[\tilde{a}_k \right] \{ \eta \} + \frac{\omega_1 b}{V} \left[\tilde{a}_c \right] \{ \eta \} + \frac{\omega_1^2 b^2}{V^2} \left[\tilde{a}_m \right] \{ \eta \} \right)
\]
Traditional Dynamic Aeroelastic Scaling

Nondimensional aeroelastic equations of motion (harmonic solution):

Reference aircraft: \(r \)

Scaled model: \(m \)

\[
\langle \ddot{\mathbf{m}}_r \rangle \{\eta\} + \langle \dot{\mathbf{m}}_r \ddot{\omega}_r \{\eta\} = \frac{1}{2} \frac{\mu_{1r}}{\kappa_{1r}^2} [\mathbf{a}_{hr}(X_{ar}, \kappa, M_r)]\{\eta\}
\]

\[
\langle \ddot{\mathbf{m}}_m \rangle \{\eta\} + \langle \dot{\mathbf{m}}_m \ddot{\omega}_m \{\eta\} = \frac{1}{2} \frac{\mu_{1m}}{\kappa_{1m}^2} [\mathbf{a}_{hm}(X_{am}, \kappa, M_m)]\{\eta\}
\]
Traditional Dynamic Aeroelastic Scaling

Nondimensional aeroelastic equations of motion (harmonic solution):
Reference aircraft: \(r \)
Scaled model: \(m \)

\[
\langle \bar{m}_r \rangle \{ \dddot{\eta} \} + \langle \bar{m}_r \bar{\omega}_r^2 \rangle \{ \eta \} = \frac{1}{2} \frac{\mu_{1r}}{\kappa_{1r}^2} \left[\bar{a}_{hr}(X_{ar}, \kappa, M_r) \right] \{ \eta \}
\]

Match \([\Phi], \langle \bar{\omega} \rangle, \langle \bar{m} \rangle\)
(from the problem \(K - \omega^2 [M] \{ \phi \} = 0 \))
through optimization

\[
\langle \bar{m}_m \rangle \{ \dddot{\eta} \} + \langle \bar{m}_m \bar{\omega}_m^2 \rangle \{ \eta \} = \frac{1}{2} \frac{\mu_{1m}}{\kappa_{1m}^2} \left[\bar{a}_{hm}(X_{am}, \kappa, M_m) \right] \{ \eta \}
\]

Equal if same aerodynamic shape and flow similarity
1 Tools

2 Dynamic Aeroelastic Scaling

3 CRM wing modal optimization

4 Aerodynamic Flutter Optimization

5 Conclusion

6 Perspectives
CRM Model

Reference Design* (jig shape): For all elements $t_r = 8.89\,mm$

Model provided by T. Achard and C. Blondeau*

* [Achard et al., AIAA/ISSMO, 2016]
CRM modal optimization: Problem definition

Hypothesis: Flow similarity assumed

Objective Function

<table>
<thead>
<tr>
<th>Objective Function</th>
<th>Dimension</th>
<th>Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode shape difference minimization (\min(N - \text{trace}(\text{MAC}([\Phi_r], [\Phi_m]))))</td>
<td>(\mathbb{R})</td>
<td>[0.0889, 26.67] mm</td>
</tr>
</tbody>
</table>

Design Variables

<table>
<thead>
<tr>
<th>Design Variables</th>
<th>Dimension</th>
<th>Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin thicknesses vector ([t])</td>
<td>(\mathbb{R}^{10})</td>
<td>[0.0889, 26.67] mm</td>
</tr>
</tbody>
</table>

Constraints

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Dimension</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced frequency matching (|\omega_r - \omega_m| = 0)</td>
<td>(\mathbb{R})</td>
<td></td>
</tr>
<tr>
<td>Mass matching (M_r - M_m = 0)</td>
<td>(\mathbb{R})</td>
<td></td>
</tr>
<tr>
<td>Generalized masses matching (m_r - m_m = 0)</td>
<td>(\mathbb{R})</td>
<td></td>
</tr>
</tbody>
</table>

→ Upper skin panels

Lower skin panels ←
Traditional Modal Optimization

Hypothesis: Flow similarity assumed

\[t_0, 3 \rightarrow 1: \text{Optimization} \]

1: Nastran Modal Analysis

2: Objective Function

3: Frequency

1: \(\Phi \) \(\omega \) \(M \)

2: \(\Phi \) \(\omega \) \(M \)

3: \(f \) \(c_1 \) \(c_2 \) \(c_3 \)

2: Mass

2: Generalized Modal Masses
CRM Modal Optimization: Results
Best Found Point vs Iteration

Criterion: Point with best objective function AND sum of constraints
1. Tools
2. Dynamic Aeroelastic Scaling
3. CRM wing modal optimization
4. Aerodynamic Flutter Optimization
5. Conclusion
6. Perspectives
What if the flow is not similar?

Reference aircraft: r

Scaled model: m

\[
\langle \bar{m}_r \rangle \{*_r \} + \langle \bar{m}_r \bar{\omega}_r^2 \rangle \{ \eta \} = \frac{1}{2} \frac{\mu_{1r}}{\kappa_{1r}^2} [\bar{a}_{hr}(X_{ar}, \kappa, M_r)] \{ \eta \}
\]

\[
\langle \bar{m}_m \rangle \{*_m \} + \langle \bar{m}_m \bar{\omega}_m^2 \rangle \{ \eta \} = \frac{1}{2} \frac{\mu_{1m}}{\kappa_{1m}^2} [\bar{a}_{hm}(X_{am}, \kappa, M_m)] \{ \eta \}
\]
What if the flow is not similar?

Reference aircraft: \(r \)

Scaled model: \(m \)

\[
\langle \tilde{m}_r \rangle \{ \eta \} + \langle \tilde{m}_r \bar{\omega}_r \rangle \{ \eta \} = \frac{1}{2} \frac{\mu_{1r}}{\sigma_{1r}^2} \left[\tilde{a}_{hr}(X_{ar}, \kappa, M_r) \right] \{ \eta \}
\]

matched through modal optimization

\[
\langle \tilde{m}_m \rangle \{ \eta \} + \langle \tilde{m}_m \bar{\omega}_m \rangle \{ \eta \} = \frac{1}{2} \frac{\mu_{1m}}{\sigma_{1m}^2} \left[\tilde{a}_{hm}(X_{am}, \kappa, M_m) \right] \{ \eta \}
\]
What if the flow is not similar?

Reference aircraft: \(r \)

Scaled model: \(m \)

\[
\langle \tilde{m}_r \rangle \{ \eta \} + \langle \tilde{m}_r \bar{\omega}_r^2 \rangle \{ \eta \} = \frac{1}{2} \frac{\mu_1r}{\kappa_{1r}^2} [\bar{a}_{hr}(X_{ar}, \kappa, M_r)] \{ \eta \}
\]

matched through modal optimization

\[
\langle \tilde{m}_m \rangle \{ \eta \} + \langle \tilde{m}_m \bar{\omega}_m^2 \rangle \{ \eta \} = \frac{1}{2} \frac{\mu_1m}{\kappa_{1m}^2} [\bar{a}_{hm}(X_{am}, \kappa, M_m)] \{ \eta \}
\]

optimize w.r.t. \(X_{am} \)
What if the flow is not similar? Aerodynamic Optimization

- Reference aircraft: \(r \)
- Scale model: \(m \)
What if the flow is not similar? Aerodynamic Optimization

- Reference aircraft: \(r \)
- Scale model: \(m \)
- Reduced frequency: \(\kappa \)
- Mach number: \(M \)
What if the flow is not similar? Aerodynamic Optimization

- Reference aircraft: r
- Scale model: m
- Reduced frequency: κ
- Mach number: M

Objective function:
What if the flow is not similar? Aerodynamic Optimization

- Reference aircraft: r
- Scale model: m
- Reduced frequency: κ
- Mach number: M

Objective function:

$$f = \sum_i (||[\bar{a}_{hr}(X_{ar}, \kappa_i, M_r)] - [\bar{a}_{hm}(X_{am}, \kappa_i, M_m)]||)$$
What if the flow is not similar? Aerodynamic Optimization

- Reference aircraft: \(r \)
- Scale model: \(m \)
- Reduced frequency: \(\kappa \)
- Mach number: \(M \)

Objective function:

\[
f = \sum_{i} (\|\bar{a}_{hr}(X_{ar}, \kappa_i, M_r)) - \|\bar{a}_{hm}(X_{am}, \kappa_i, M_m)\|)
\]

Design variables:
What if the flow is not similar? Aerodynamic Optimization

- Reference aircraft: r
- Scale model: m
- Reduced frequency: κ
- Mach number: M

Objective function:

$$f = \sum_i \left(\| \tilde{a}_{hr}(X_{ar}, \kappa_i, M_r) \| - \| \tilde{a}_{hm}(X_{am}, \kappa_i, M_m) \| \right)$$

Design variables:

- X_{am}: Parameters defining the wing planform
Aerodynamic Optimization: Goland Wing Test Case

M=0.8 Baseline

M=0.3 Baseline
Aerodynamic Optimization: Goland Wing Test Case
1. Tools

2. Dynamic Aeroelastic Scaling

3. CRM wing modal optimization

4. Aerodynamic Flutter Optimization

5. Conclusion

6. Perspectives
Review of the traditional dynamic aeroelastic scaling approach
Conclusion

- Review of the traditional dynamic aeroelastic scaling approach
- Modal optimization for similarity
Conclusion

- Review of the traditional dynamic aeroelastic scaling approach
- Modal optimization for similarity
- Application to the CRM test case
Conclusion

- Review of the traditional dynamic aeroelastic scaling approach
- Modal optimization for similarity
- Application to the CRM test case
- Importance of no flow similarity
Conclusion

- Review of the traditional dynamic aeroelastic scaling approach
- Modal optimization for similarity
- Application to the CRM test case
- Importance of no flow similarity
- Wing planform optimization for flutter similarity
1. Tools
2. Dynamic Aeroelastic Scaling
3. CRM wing modal optimization
4. Aerodynamic Flutter Optimization
5. Conclusion
6. Perspectives
Perform flutter-based wing planform optimization with the CRM model
Perspectives

- Perform flutter-based wing planform optimization with the CRM model

- From the optimized planform, optimize wing twist distribution and structure properties to match static deflection
This work has been supported by the EU project 658570 - NextGen Airliners funded by Marie Skłodowska-Curie actions (MSCA).

Thanks for your attention!

Questions?