

Garden Workshop 2015 01/07/2015

Mimicking the Albatross flight for long-range Mini-UAV applications

Vincent Bonnin

Context

Long Endurance flight, a key factor of UAV utility

lon Tiger				
Energy Supply	Endurance			
Fuel-Cell Powered	48 h (April 2013)			
LaserMotive (Lockheed Stalker)				
Energy Supply	Endurance			
Ground Beamed Laser	48 h (June 2012)			
Puma AE				
Energy Supply	Endurance			
Solar Powered	9 h (August 2013)			

The Albatross Legacy

Late 19th century observations

Apparent Positive Energy Contribution:

Non-flapping flight

Late 1980s measurements

Significant Travel Performances:

Over 800 km a day on average

Wandering Albatross

Copyrights Kimball Chen, www.keaphotography.org

Mass	Wing span	AR	Endurance	Energy Supply
~ 9 kg	~ 3 m	~ 15	days	?

Research Topic

IS a e 🗸

The Albatross Legacy

Albatross & Wind worldwide distribution

Simultaneous trips of two males from Crozet Islands

- 1_Birdlife International, "Tracking Ocean Wanderers", 2004
- 2_NASA, "Surface meteorology and solar energy: Methodology", 2004

3_H. Weimerskirch et al. "Foraging Strategies of Wandering Albatrosses through the Breeding Season: A Study Using Satellite Telemetry", April 1993

Which trajectories would optimize energy-extraction?

The Environment

Rather flat surface, non-smooth

Mean velocity profile of a turbulent boundary layer

The Vehicle

Point Mass Model	Wandering All	batross 3.30 m	
with Aerodynamic behaviour	<	G	
Pige	eon 60 cm		
UAV 2.5 m $L = \frac{1}{2}\rho.S.C_L.V_{Air}^2$ $D = \frac{1}{2}\rho.S.(C_{D0} + C_{D2}.C_L^2).V_{Air}^2$			
		UAV	Wandering Albatross
	Mass	6.6 kg	8.5 kg
-	Wing span	2.49 m	3.3 m
	Wing Area	0.485 m ²	0.65 m ²
Power "Poundary Layer Dynamic Sogring for Autonomous Ai	$(C_L/C_D)_{max}$	20.5	20

Bower, "Boundary Layer Dynamic Soaring for Autonomous Aircraft: Design and Validation. Ph.D. Dissertation",2011

Equations of Motion

Earth inertial reference frame Point-Mass model

Equations of motion

m. $\dot{\mathbf{V}} = \mathbf{L}.(\sin\varepsilon \cdot \cos\delta \cdot \cos\mathbf{\phi} + \sin\delta \cdot \sin\mathbf{\phi}) - \mathbf{D}.\cos\varepsilon \cdot \cos\delta + m.g.\sin\gamma$ Inertial speed Azimuth angle $m.\dot{\psi}$. V. $\cos \gamma = L.$ $(\sin \varepsilon . \sin \delta . \cos \phi - \cos \delta . \sin \phi) - D. \cos \varepsilon . \sin \delta$ Flight path angle -m. $\dot{\gamma}$. V = L. cos ε . cos ϕ + D. sin ε - m. g. cos γ East position $\dot{\mathbf{x}} = \mathbf{V} \cdot \cos \gamma \cdot \cos \psi$ North position $\dot{\mathbf{y}} = \mathbf{V} \cdot \cos \gamma \cdot \sin \psi$ with Aerodynamic behaviour $\dot{\mathbf{z}} = -\mathbf{V}.\sin\gamma$ Height $L = \frac{1}{2}\rho. S. C_{L}. V_{R}^{2}$ $D = \frac{1}{2}\rho. S. (C_{D0} + C_{D1}. C_{L} + C_{D2}. C_{L}^{2} + C_{D3}. C_{L}^{3} + C_{D4}. C_{L}^{4}). V_{R}^{2}$ X = $\dot{X} = G(X, C_L, \phi)$ y

Optimization Problem

Minimize	Nominal Wind:	u_*
Subject to	No stall Max. bank angle&rate	$C_L \le 1.17$ $-85^o \le \phi \le 85^o \qquad \left \dot{\phi}\right \le 90^o/s$
	Max. flight path angle	$-75^o \le \gamma \le 75^o$
	Wing tip clearance	50 cm
	Equations of motion	$\dot{X} = G(X, C_L, \phi)$
	Initial Conditions	$\{x_{initial}; y_{initial}\}$
	Periodicity	$\begin{pmatrix} V \\ \psi \\ \gamma \\ x \\ y \\ z \end{pmatrix}_{init} = \begin{pmatrix} V \\ \psi \\ \gamma \\ x \\ y \\ z \end{pmatrix}_{final}$
Energy-Ne	eutral Trajectory	$E_{tot}(final) = E_{tot}(initial)$

Validation trajectory

Optimized energy-neutral open trajectory

Closed-Loop Trajectory

Closed-Loop Trajectory

Optimized energy-neutral closed trajectory

Closed-Loop Trajectory

Optimized energy-neutral closed trajectory

2D Analysis

Contributions from non-conservative forces

Overall Energy Cycle

Overall Energy Cycle

Energetic balance along an optimized energy-neutral closed trajectory

Significance of Wind Gradient

Vertical variation in horizontal wind enables repeatable energy-extraction cycle

Refinement of Environmental Model

Rather flat surface, non-smooth

Velocity profiles of the wind established over a moving wavy surface

Dynamic Soaring on a Wavy surface

 ${\cal U}_*$ decreased by 12%

Thrust Augmented Dynamic Soaring

Thrust-augmented-energy-neutral open loop

Range Performance by Dynamic Soaring

Variation in range performance with the wind strength at 10 m

IS a e state

Closing the loop

Conclusion & Perspectives

Conclusions

- Simulation of DS flight
- Understanding of Energy-harvesting
- Variations in DS performances

Perspectives

Get closer to practicability

- Turbulence disturbance
- Control-law strategy
- Experimental Validation

Enlarge the scope of DS

- Further control variables (flaps, regenerative soaring)
- Various environments: hill, jet stream
- Augment DS with gust soaring

Delair-Tech DT-18 in the ISAE S4 wind tunnel

DS simulation of Delair-Tech DT-18