Wind in Cities: Challenges and Opportunities for MAVs

Simon Watkins

www.rmit.edu.au

Projects at RMIT

- 1. Talking; interacting with air traffic control
- 2. Sheepdog; rounding up cattle and/or sheep
- 3. Eagle; scaring pigeons from sporting venues
- 4. Brain; using human brain waves for control
- 5. Sampling; monitoring sewage from board of works
- 6. Security; waterproof for communicating with boat refugees
- 7. Quiet; minimising noise from rotors
- 8. Sniffing; gas detection for MFB
- 9. Mining; close up viewing of large open cut mines
- 10.Flight in cities under windy conditions

Use of MAVs in Cities

Global Trend: Vertical Urbanisation

Can we extend flight time by using the wind (updrafts, DS)?

How can we keep MAVs as steady as possible?

How can we keep MAVs as steady as possible?

X

TOP-VIEW (Lower Working Section)

NOT TO SCALE

Turbulence Quantities

- Intensities lu, lv, lw
- Power Spectral Densities
- Integral Length Scales
- Pitch angle as a function of lateral spacing

Types of Craft Tested

Fixed wing

Morphing

Flapping

Main Conclusions from Flight Trials

- Reducing span gives greater potential roll rates since roll inputs do not reduce as much as polar MOI
- Need better control systems than IMU-based to hold steady flight

Avian Sensing

- Inertial Sensing
- Optical Flow
- Load Sensing (Muscles)
- Local Flow Sensing (Feathers)

Not

explored

Biologically inspired pressure sensing

Several studies using pressure sensing

Good correlation between upstream turbulence, leading edge pressures and roll but:

 Time between leading edge pressure change and generation of rolling moment is very short (but longer than roll acceleration from accelerometer)

• Our control systems still cannot react sufficiently rapidly

 Need more time-forward information (phase-advanced) thus LATENCY is a big issue

Extending Sensing Upstream

Turbulence Modelling

Studying wind to assist building design and energy harvests in cities

RMIT University

Conclusions

- Sensing upstream of aircraft very useful; full patent lodged
- Effect of small scale turbulence negated by technique
- Autonomous updraft soaring possible in cities but challenge is the large scales of turbulence – lift comes and goes

All in the name of research!!

"If we could just get above the trees we wouldn't have to deal with all this bumpiness" Orville to Wilbur circa 1903

Suma

PSD Replication in Tunnel

