The Organic Aerosols of Titan’s Atmosphere

Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman
Jet Propulsion Laboratory, California Institute of Technology, U.S.A.
June 18, 2012

Titan - IPPW9
Motivation

• The formation of organic particles in Titan’s atmosphere is one of the outstanding question in astrobiology.

• Are these organic particles those that form the dune fields? Are additional processes involved in the formation of the organic ‘sand’?

• What is the size of this carbon reservoir? How does it compare with other carbon reservoirs? What is the downward flux? What is the timescale of formation of the haze? How does it compare with the age of the dunes?

How can future probes to Titan determine the chemical composition and the structural properties of these organic particles?
Data from NASA's Cassini spacecraft show that the sizes and patterns of dunes on Saturn's moon Titan vary as a function of altitude and latitude. (Credit: NASA/JPL-Caltech, and NASA/GSFC/METI/ERSDAC/JAROS and U.S./Japan ASTER Science Team)
Escape: $30 \text{ kg/s} = 1,000 \text{ GT per My}$

$\approx 250 \text{ kg/s}$

$\approx 30 \text{ Myr}$

CH_4

$194,000 \text{ GT}$

$\text{C}_2\text{H}_6 - 2 \text{ GT}$

$\approx 150 \text{ kg/s}$

$\approx 100 \text{ kg/s}$

$\approx 4,000 \text{ GT}$

Haze particle $10 /\text{cm}^3$

3000 monomers

$\phi_{mon} = 50 \text{ nm}$

0.14 GT

Precipitation of aerosols

Subsurface reservoirs?

When? 500 My (isotopic ratios, density of impact craters, Titan’s shape)

Where and how? One catastrophic event or several large events (impact craters, cryovolcanism)

From Sotin et al., (2012)
Several instruments provide information on the organic haze:

- Instruments such as CAPS and INMS have been able to probe the upper atmosphere (920 km to 1200 km) of Titan’s atmosphere. CAPS demonstrated that heavy molecules exist at these altitudes (Coates et al., 2007).

- Other like UVIS, ISS, and VIMS provide information on the haze at lower altitudes thanks to solar occultations.

- Huygens provided information in the lower 200 km.

- Models (e.g. Rannou et al., 2010) suggest that the haze opacity increases by a factor of 3 from the South Pole to the equator, and then decreases by a factor of 2 between 30°N and the North Pole (see next slide).

- The reference density varies in the literature from 5 to 90 cm\(^{-3}\).

Here we focus on the analysis of the VIMS solar occultations to derive properties of the aerosols. (side application is to infer the opacity in order to retrieve the surface reflectance and its variations).
Types of aerosols

<table>
<thead>
<tr>
<th>Type of aerosols/particles</th>
<th>Location</th>
<th>Size</th>
<th>density</th>
</tr>
</thead>
<tbody>
<tr>
<td>haze</td>
<td>Global – peak density is around 80 – 100 km depending on models.</td>
<td>0.2 to several µms – made of 3000 monomers that may form at very high altitude (1000 km)</td>
<td>30 cm⁻³ at 90 km and strong decrease below Griffith et al. (2006). Peak value of 5 cm⁻³ in Tomasko et al. (2008)</td>
</tr>
<tr>
<td>Ethane clouds</td>
<td>North pole in winter. Above 50°—permanent—40 to 60 km altitude</td>
<td>1 to 3 µms</td>
<td>Column abundance of 60,000 cm² = 60 cm⁻³ if cloud is 10 m thick.</td>
</tr>
<tr>
<td>Methane clouds</td>
<td>Southern mid-latitudes in winter – episodic – 10 km altitude</td>
<td>Larger than 10 µms (Toon et al., 1988)</td>
<td></td>
</tr>
</tbody>
</table>

The aerosol density of 5 cm⁻³ in the first 80 km comes from Tomasko et al. (2008) Scale height of 57.5 km (Bellucci et al., 2009)
Aerosols at the poles

General atmospheric circulation is characterized by downwellings at the winter pole with the formation of a polar hood made of haze particles and a large cloud system (upper right panel).

After equinox (August 2009), as Titan’s summer starts, Global Circulation Models predicted the formation of a South polar hood. ISS and VIMS observations during T83 and T84 in May and June 2012 confirm this prediction. The red arrows show the location of a dense haze layer over the South Pole. This layer forms due to the down-welling circulation that brings high altitude particles over the South Pole.
The VIMS observations

VIMS can see Titan’s surface in 7 atmospheric windows. In these atmospheric windows, the transmission is limited by the haze opacity. Observations at these wavelengths for different viewing geometry provide information on the characteristics of the haze. Solar Occultations probe different altitudes.

\[
I(\lambda, \phi) = F(\lambda) \cdot \cos(i) \cdot R_S(\lambda) \cdot e^{-\tau_{\text{atm}}} + I_{\text{scattered}}(\lambda, \phi)
\]

\[
\tau_{\text{atm}} = \int_0^{D_{\text{ex}}/D_{\text{ex}}} \sigma_{\text{Scat}}(\lambda) n(z) dl + \int_0^{D_{\text{ex}}} \sigma_{\text{Scat}}(\lambda) n(z) dl
\]

\[
n(z) = n_{\text{ref}} \cdot e^{-\frac{z-Z_{\text{ref}}}{H_{\text{haze}}}}
\]

June 18, 2012

Titan - IPPW9
The VIMS observations

Several instruments provide information:

• Rannou et al. (2010) suggest that the haze opacity increases by a factor of 3 from the South Pole to the equator, and then decreases by a factor of 2 between 30°N and the North Pole. The reference density varies in the literature from 5 to 90 cm⁻³. Use the solar occultations to constrain the density of aerosols.

• Correction for determining the reflectance of the surface – correction depends on latitude and time

\[
I(\lambda, \phi) = F(\lambda). \cos(i). R_s(\lambda). \exp(-\tau_{atm}) + I_{scattered}(\lambda, \phi)
\]

\[
\tau_{atm} = \int_{D_{max}}^{0} \sigma_{Scat}(\lambda) n(z) dl + \int_{0}^{D_{max}} \sigma_{Scat}(\lambda) n(z) dl \quad n(z) = n_{ref}. \exp\left(-\frac{z - Z_{ref}}{H_{haze}}\right)
\]
Analysis of solar occultations
S70-Rev153-T78 – 29 November 2011
2011-255T02:50:06 @ 5821 km altitude
Transmission curves in different atmospheric windows and fit with a transmission curve assuming constant scattering cross-section and an exponential law for the density of haze particles (scale height on the order of 60 km). These results are identical to those published by Bellucci et al (2009).
List of occultation observations

dates and latitudes of occultations

Latitude

E

S

01/01/05 01/01/08 01/01/11 01/01/14 01/01/17

Time

1 2 3 5 6 7

0 6 2 3 2 8

June 18, 2012

Titan - IPPW9
Transmission during T78 ingress solar occ

\[
\tau = n_{\text{ref}} \sigma_{\text{scat}}(\lambda)H_{\text{haze}} \exp\left(\frac{Z_{\text{ref}}}{H_{\text{haze}}}\right) \exp\left(-\frac{Z_0}{H_{\text{haze}}}\right) \sqrt{2\pi\left(\frac{R}{H_{\text{haze}}} + \frac{Z_0}{H_{\text{haze}}}\right)}
\]
Questions to be addressed:

- Two different kinds of haze revealed by different scale heights
- Density of the haze varies with latitude and time
- Values of haze opacity in the different atmospheric windows should yield information on the characteristics of the haze

<table>
<thead>
<tr>
<th>Flyby #</th>
<th>lat</th>
<th>long W</th>
<th>day</th>
<th>H0</th>
<th>0.933 tau0</th>
<th>exp(-tau)H0</th>
<th>2.018 tau0</th>
<th>exp(-tau)H0</th>
<th>2.799 tau0</th>
<th>exp(-tau)H0</th>
<th>5 micron band tau0</th>
<th>exp(-tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T10 ingress</td>
<td>-70</td>
<td>305</td>
<td>1/15/2006</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T10 egress</td>
<td>-70</td>
<td>305</td>
<td>1/15/2006</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T26 ingress</td>
<td>-75</td>
<td>4</td>
<td>3/10/2007</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T32 ingress</td>
<td>-75</td>
<td>4</td>
<td>3/10/2007</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T53 egress</td>
<td>-75</td>
<td>4</td>
<td>3/10/2007</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T62 ingress</td>
<td>-75</td>
<td>4</td>
<td>3/10/2007</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T62 egress</td>
<td>-75</td>
<td>4</td>
<td>3/10/2007</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T78 ingress</td>
<td>-75</td>
<td>4</td>
<td>3/10/2007</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T78 egress</td>
<td>-75</td>
<td>4</td>
<td>3/10/2007</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T78 ingress</td>
<td>-75</td>
<td>4</td>
<td>3/10/2007</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
<tr>
<td>T78 egress</td>
<td>-75</td>
<td>4</td>
<td>3/10/2007</td>
<td>75.0</td>
<td>2.00</td>
<td>5.80</td>
<td>57.50</td>
<td>0.8</td>
<td>38.6</td>
<td>57.5</td>
<td>0.40</td>
<td>62.10</td>
</tr>
</tbody>
</table>
Conclusions

The Cassini-Huygens mission has shed light on Titan’s atmospheric organic factory. The data provide information on:

- the density of aerosols in Titan’s atmosphere
- the size of aerosol particles

Future missions will build upon the discoveries of the Cassini-Huygens mission by determining the composition and the structure of these aerosols.

• Only probes can perform such analysis.

The density of the organic aerosols being small, a probe should

• collect aerosols at different altitudes in different containers for future analysis once the probe has landed,
• do in-situ analysis for threshold science to be acquired before hazardous landing