TEST CASE 5: Radar Cross of a Drone Swarm

Toufic ABBOUD (abboud@imacs.polytechnique.fr) Frédéric DELCORSO (frederic.delcorso@ariane.group) Gildas KUBICKE (gildas.kubicke@intradef.gouv.fr)

1. Abstract

We are interested in the monostatic Radar Cross Section (RCS) of a drone swarm. The micro-Doppler signature is not considered. The swarm drones are generated from a unit drone through rigid-body transformations (rotations and translations). Three sub-cases are considered: the first involves a frequency sweep for a small swarm in the free space; the second is an angular sweep for a larger swarm above an infinite ground plane; the final sub-case is a variant of the second, obtained by applying a small perturbation of the drone positions.

2. Geometry

We consider a *Perfectly Electric Conductor (PEC) drone* that fits in the bounding box:

COORD_MIN (mm)	-1.97715e+02	-1.87715e+02	-2.70000e+01
COORD_MAX (mm)	1.97715e+02	1.87715e+02	4.65000e+01

Unit drone

CAD is provided in two formats: unit_drone_wsem2025.stp unit_drone_wsem2025.iges

A swarm is generated by applying rigid-body transformations (rotations and translations) to this unit drone. To simplify, we only consider *rotations about the z axis*. The provided data includes the angle ϕ_{rot} (in *degrees*) and the translation vector coordinates ($\delta x, \delta y, \delta z$) (in *millimeters*), following a 'rotate-*then*-translate' convention. Each swarm configuration is described by a text file in the following format:

#	phi	dx	dy	dz
	-3.08	-46.95	6.84	99967.53
	3.67	2.19	-3.72	11988.50

Each row corresponds to one drone in the swarm.

3. Sub-case 5.1: Regular 3x3x1 swarm — Frequency sweep

Swarm configuration: 3x3x1 regular grid in the *free space (no ground plane)*. Positions: Sub-Case51 positions 3 3 1.txt

3x3x1 swarm

We ask for the co-polarised and cross-polarised monostatic RCS in both magnitude and phase: Frequency band: from 8 to 10 GHz with a step of 4 MHz (501 frequencies)

Incident angles: $\theta^{inc} = 90^\circ$, $\phi^{inc} \in \{0^\circ, 30^\circ, 60^\circ, 90^\circ\}$

The elevation angle θ is considered as the angle from z-axis to the horizontal plane (xOy). Thus, $\theta = 90^{\circ}$ corresponds to a wave vector lying in the horizontal plane.

The azimuth angle ϕ is considered from x-axis to y-axis. Thus, $\phi = 0^{\circ}$ corresponds to a wave vector collinear but in opposite direction to x-axis. And $\phi = 90^\circ$ corresponds to a wave vector collinear but in opposite direction to y-axis.

The origin of the coordinate system is used as the phase reference.

4. Sub-case 5.2: Regular 4x4x2 swarm — Angular sweep

Swarm configuration: 4x4x2 regular grid above an infinite PEC ground plane at z=0. Positions: Sub-Case52 positions 4 4 2.txt

4x4x2 swarm

We ask for the co-polarised and cross-polarised monostatic RCS (magnitude only):

Frequency: 3 GHz (1 frequency)

Incident angles: $\theta^{inc} = 89^\circ$, ϕ^{inc} from 0° to 90° with a step $\delta \phi^{inc} = 0.025^\circ$.

5. Sub-case 5.3: Perturbed 4x4x2 swarm — Angular sweep

The same as sub-case 2, but with a small perturbation of the drone positions: we applied a random perturbation of $\pm 5^{\circ}$ and ± 5 cm in each direction

Positions: Sub-Case53 positions 4 4 2.txt

6. Convention and output format

Fig. 1: Spherical coordinates and local basis.

We recall the definition of the monostatic RCS as follow:

$\overrightarrow{E}^{in} = \hat{\phi}$	$\vec{E}^{in} = \hat{\theta}$
$\sigma_{\phi\phi} = \lim_{r \to \infty} 4\pi r^2 \vec{E}^{sc} \cdot \hat{\phi} ^2, \varphi_{\phi\phi} = \arg \lim_{r \to \infty} r\vec{E}^{sc} \cdot \hat{\phi}$	$\sigma_{\phi\theta} = \lim_{r \to \infty} 4\pi r^2 \vec{E}^{sc} \cdot \hat{\phi} ^2, \varphi_{\phi\theta} = \arg \lim_{r \to \infty} r\vec{E}^{sc} \cdot \hat{\phi}$
$\sigma_{\theta\phi} = \lim_{r \to \infty} 4\pi r^2 \vec{E}^{sc} \cdot \hat{\theta} ^2, \varphi_{\theta\phi} = \arg \lim_{r \to \infty} r\vec{E}^{sc} \cdot \hat{\theta}$	$\sigma_{\theta\theta} = \lim_{r \to \infty} 4\pi r^2 \vec{E}^{sc} \cdot \hat{\theta} ^2, \varphi_{\theta\theta} = \arg \lim_{r \to \infty} r\vec{E}^{sc} \cdot \hat{\theta}$

The time dependence is assumed to be $e^{-i\omega t}$.

Results for the sub-cases will be provided in three text files: RCS51.txt, RCS52.txt and RCS53.txt. RCS51.txt contains eleven columns

Freq	θ	ϕ	$\sigma_{\phi\phi}$	$arphi_{\phi\phi}$	$\sigma_{\phi heta}$	$arphi_{\phi heta}$	$\sigma_{ heta \phi}$	$arphi_{ heta \phi}$	$\sigma_{ heta heta}$	$arphi_{ heta heta}$
(Hz)	(deg.)	(deg.)	(dBm ²)	(deg.)	(dBm ²)	(deg.)	(dBm ²)	(deg.)	(dBm ²)	(deg.)

while RCS52.txt and RCS53.txt each contain seven columns each:

Freq	θ	ϕ	$\sigma_{\phi\phi}$	$\sigma_{\phi heta}$	$\sigma_{ heta \phi}$	$\sigma_{ heta heta}$
(Hz)	(deg.)	(deg.)	(dBm ²)	(dBm ²)	(dBm ²)	(dBm ²)