SkyScanner

“Deploying fleets of enduring drones to
probe atmospheric phenomena’

Project supported by the STAE foundation, 2014 / 2016
(stemmed from the Micro Air Vehicle Research Center)

https://www.laas.fr/projects/skyscanner

(Administrative start on June, 2014 — actual start on Oct. 2014)




* Follow the evolution of a cumulus
cloud to study entrainment and the
onset of precipitation

v Characterize state of boundary layer

below and surrounding a cloud
atmospheric stability
lifting condensation level
cloud updraft

v’ Follow 4D evolution of the cloud
entrainment at edges
inner winds
amount of liquid water
cloud microphysical properties
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=) A fleet of enduring drones is required

=) Researches on the drone conception,
the fleet control, and the cloud models



Scope of the project

« 3 research axes:

— Refine aerologic models of clouds

— Conceive enduring and agile
micro-drones

— Fleet control " -~

Plus: experimental developments and validations



3 research axes / 5 partners

Axis 1 : Aerologic
models

Axis 3 : Fleet

control
LAAS-CNRS
?ENAC /

ONERA

Axis 2 : Enduring drone
conception and control

» Funding amounts to five 18 months postDocs / Research Engineers
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What are the problems to solve?

Mission: “Deploy a fleet of drones so as to maximize the
amount of gathered information on the cloud” (~ adaptive
sampling)

— Where to gather information?

— How to represent / maintain the gathered information?
— Which drone(s) allocate to which area?

— How to optimize the trajectories to reach these areas?
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— How to optimize the conception of the drones?
— How to optimize the control of the drones?
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Outline

Aerologic models of clouds
— Exploit simulations

— Towards a conceptual model
Fleet control

— A hierarchy of models

— Cloud mapping

— Cloud exploration

Enduring and agile micro-drones conception and
control

First experimental developments



Large Eddy simulations (MesoNH)

* Two objectives:
— Provide test cases to

Simulation grid
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Large Eddy simulations (MesoNH)

Mapped variables: wind, P, T, U, Liquid Water Content

 Cloud geometry
VS
—) Conceptual Model: vertical velocity
* Cloud tracking
« Cumulus microphysics

Post-processing
(output/second)




Outline

* Fleet control
— A hierarchy of models
— Cloud mapping
— Cloud exploration



Fleet control; Models

Models

1. Models of the environment: winds, atmospheric
parameters, geometry

e w |l//
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“Conceptual” model Dense model
(macroscopic, coarse scale) (~ 10m scale)

- Need to estimate these models (that evolve over time)
from data acquired online



Fleet control: Models

Models

1. Models of the environment: winds, atmospheric
parameters, geometry

2. Model of the drones —wo\»(aé{\//\” N

 Kinematic constraints € —os-

=90~ 45

Y (m)
« EXpress energy variations
Kinetic (airspeed)
Potential
Stored (battery)

-> Simulations
» Of the dense cloud models: Meso-NH, JSBSim
» Of the drones : New Paparazzi Simulator
* Finer drone model(s) will be defined and exploited



Fleet control: cloud mapping

* Two challenges: From...

— mapping a 4D structure from data
perceived over a (small) set of 1D
manifolds

.. to:




Fleet control: cloud mapping

* Two challenges: From...

— mapping a 4D structure from data
perceived over a (small) set of 1D
manifolds

.. to:

— Update two map structures:
coarse global / precise local



Fleet control: cloud mapping

» Local map: Gaussian Process Regression (aka “kriging”,
originally exploited in geosciences, spatial analysis)

1.5F 15}

0.5r

From - [ S (¢

-1.5}

-2.5} -2.5

-16 -14 -12 -1 -08 -06 -04 -02 0 0.2 -16 -14 -12 -1 -08 -068 -04 =02 0 0.2
b3

Estimate y*from any x* using only a kernel function k(x,,x,) that encodes
the spatial dependence between the data

(still possible to introduce priors on the model — c¢f coarse cloud model)



Fleet control: cloud mapping

* Local map: Gaussian

Process Regression
(aka “kriging”, originally
exploited in geosciences,
spatial analysis)
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Fleet control: cloud mapping

 Numerous open issues:
« Which kernel(s) exploit

« Optimize hyper parameters learning (exploit sparsity, develop
incremental schemes, ...)

* Inter-parameter correlations
 Relation with the coarse model
— GPR initializes the coarse model

— The coarse model is a prior for the GPR
— Learn classes of kernels?

* How to infer the utility of perceiving given areas?




Fleet control: Models and Algorithms

1. At a coarse (symbolic level, AT ~ 10sec)

 Algorithms

L

- Where should what information be gathered?
- Who goes where?



Fleet control: Models and Algorithms

1. At a coarse (symbolic level, AT ~ 10sec)

2. At afiner level (AT ~ 1sec)
 Algorithms

- Who goes where?



Fleet control: cloud probing

 Two-stages approach

1.

2.

At a coarse level:
|dentification of utility zones / points

Allocations of drones to zones
(exploit predefined patterns?)

For each drone:

Plan trajectories with forward
simulation

Maximise utilities, minimize energy,
satisfy time constraints

coarse cloud
and drones AT ~ 10sec
models

dense cloud
and fine AT ~ 1sec
drones models



Fleet control: cloud probing

Maximizing collected data taking into account air flows
for navigation (energy constraint)

Two different fields as input of our optimization problem:

e Scalar utility field e Currents vector field
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e Both fields are: 3-dimensional and time dependent



Fleet control: cloud probing

e 2D environments

e Fictitious utility map and
currents fields

e Trajectories generation:
Random sampling of feasible
trajectories for each AT time
interval

o Trajectory divided in sub-
intervals
o Sampling in control space

Random feasible
directions every dt
(constrained)

Current Field

Va const.

Initial position

and direction

Feasible Trajectory

Utility Map

l

Optimization
Function
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Fleet control: cloud probing

Preliminary results
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Fleet control: Models, Algorithms and
Architecture

1. Where are the information processed?

* Architecture

2. Where are the decisions taken?

3. Will there be men in the loop?



Outline

» Enduring and agile micro-drones conception and
control



Drone conception

Design optimization of enduring mini micro UAV

Objectives

@ The main objective is to design a micro UAV for a specific mission profile
which mainly consists of flight phases through cumulus clouds

@ In parallel, exploiting the atmospheric disturbances such as gusts will be
investigated in order to improve autonomous flight

-

A set of mission profiles are going to be established for the electric powered
UAV

Example of mission profile

There exists several flight phases : [ \
G,
@ take-off - Sezszer oo
Iy oee g Ide2""2e ‘ .
@ loiter at a constant altitude pat g [ ) N, pU
. . ;:P: —
@ climb to an altitude R
Ry 2
@ dash 7%0 t, . duration

.\" P : power /




Drone conception

OpenMDAQO is an open source framework for analyzing and solving MDAO
(Multidisciplinary Design Analysis & optimisation)

@ Written in Python language
@ A problem is represented by a system of objects called components

@ Framework that allows for integration of different modules to form a
design workflow

Four element concept
@ Workflow: ordered

combination of components to
form a design process -

@ Components: modules
containing analysis tools or

simulation models ) p— Fﬂ

@ Assembly: container for e
components and manages their L ]
data flow -

@ Driver: analysis algorithm that
runs the workflow




Drone conception

Each component contains :

@ A Python module allowing to interface between a program using in the
component (ex : AVL, Xfoil) and OpenMDAO

@ A inherits class can be written to connect the inputs and outputs of one
component to those of other components, allowing data to be passed
between them

GENERIC aircraft configurations
reference surface area, wing span dsmension

==

Qurrent work

System mass :

Propulsion system
structunl mass, motor mass OP ‘

.

mass component l propakive compoaent

Aerodynamics (AVL, Xfoil) :
- viscous drag addition for the lifting surfaces
- fuselage viscous drag

serodynami compoaent




Drone conception... and control

|
R Simulations de scenairii B

ONERA

Tous

A

Données :
géomeétriques,

|n§n|elles, _ Modeles linéarisés Systeme embarqué
aérodynamiques, de synthese Tous

du Paparazzi de 'ENAC v 5 Ay (2 7y
y = Cx + Du

Données :

geometriques,
inertielles,

aérodynamiques, d
du vecteur ISAE

A 4

Synthéses des lois —

Planification
LAAS

Architecture des lois :

basée sur celle
du Paparazzi de I'ENAC
(consignes, capteurs, ...)

Guidage &
Navigation
ENAC




Drone conception... and control

Conflicting objectives

Rejet de perturbation  Profit de perturbation
Qualité de mesure ++ =
Maintien de vitesse + -
Maintien d'altitude + -
Activité de gouvernes - ++

Consommation - ++
d'énergie

Exploration verticale + -
fine du nuage

Exploration verticale - +
rapide du nuage

Exploration horizontale + -
fine du nuage

Exploration horizontale - +
rapide du nuage



Outline

Aerologic models of clouds
— Exploit simulations

— Towards a conceptual model
Fleet control

— A hierarchy of models

— Cloud mapping

— Cloud exploration

Enduring and agile micro-drones conception and
control

First experimental developments



Experimental developments

Main objectives:

- Aircraft modeling methodology
- Aerodynamic model
- Propulsion model
- Aircraft performances (for
trajectory planning)

- Wind estimation

- On-line estimation of the local
wind field

- Real flights and experiments
- Integration of new sensors on a
test platform
- Motor test bench
- Using the Paparazzi UAV system

http.//paparazziuav.org



Instrumentation

e

Aircraft integration

- Based on a foam glider (only
during the development phase)

- Pitot tube (airspeed norm)

- Angle of attack (airspeed
direction) GPS and IMU

//

Motor test bench
- Build a propulsion model
- Automated measurement
procedure



Vz(m/s)

Estimation of the wind using
a non-linear Kalman filter
(UKF)
- Inputs : IMU, GPS and

151

05

-0.5

airspeed data

- Outputs : 3D wind and/or

airspeed vector
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- Detection of a wind updraft
during a gliding phase

- Some parameters are only
observable while performing
iImposed maneuvers

- Model will be improved to use
the angle of attack sensor or the
aerodynamic model as input

220



Aircraft identification

Aircraft polar estimation

- Gliding flights at different
airspeed (angle of attack)
- Automated procedure using the
Paparazzi flight plan langage
- Identification methods
- Polynomial data fitting on
simplified model
- Non-linear least-square
optimization : data set is currently
too noisy for a good convergence

- Non-linear Kalman filter (UKF) :
under investigation




Aircraft identification

ENAC

EcoLE NATIONALE DE L'AVIATION CIVILE




Summary

Aerologic models of clouds
— Exploit simulations

— Towards a conceptual model
Fleet control

— A hierarchy of models

— Cloud mapping

— Cloud exploration

Enduring and agile micro-drones conception and
control

First experimental developments



Next May in Toulouse

 Annual conference of the International
Society for Atmospheric Research using <=
Remotely piloted Aircrafts

~ ISARRA

www.isarra.org



