High-Fidelity Multidisciplinary Design Optimization for the Next Generation of Aircraft

Joaquim R. R. A. Martins http://mdolab.engin.umich.edu

Congress on Numerical Methods in Engineering • Lisbon, Portugal • July 1st, 2015

Numerical methods have been playing an increasing role in engineering analysis

Experiments

Numerical simulations

40% fewer wind tunnel days

[Airbus A380 - RAe Hamburg & VDI January 2008]

Once numerical simulations are developed, they can be used for design optimization

Design optimization problem: minimizef(x)objectivewith respect toxdesign variablessubject to $c(x) \le 0$ constraints

Complex systems require the consideration of multiple disciplines, hence MDO was born

Aerodynamics Structures Stability & control Weights Loads Noise Materials Mission

JAL B787 climbing after takeoff from SAN • © J.R.R.A. Martins 2013

Research in the Multidisciplinary Design Optimization Laboratory is divided into two main thrusts

Fundamental MDO algorithms

With 90,000 daily flights, improvements in aircraft performance has a huge impact

Airplane fuel burn per seat has decreased by over 80% since the first jet

The next generation of aircraft demands even more of the design process

- Highly-flexible high aspect ratio wings
- Unknown design space and interdisciplinary trade-offs
- High risk

ALL DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER

Want to optimize both aerodynamic shape and structural sizing, with high-fidelity

3 major challenges

1. Computational costly to evaluate objective and constraints

3. Large numbers of design variables, design points and constraints High-Fidelity Multidisciplinary Design Optimization for the Next Generation of Aircraft

Choice of optimization algorithm
 Computing derivatives efficiently
 Aerodynamic shape optimization

Aerostructural design optimization

Summary and ongoing work

High-Fidelity Multidisciplinary Design Optimization for the Next Generation of Aircraft

Choice of optimization algorithm
Computing derivatives efficiently
Aerodynamic shape optimization
Aerostructural design optimization
Summary and ongoing work

Gradient-based optimization is the only hope for large numbers of design variables

High-Fidelity Multidisciplinary Design Optimization for the Next Generation of Aircraft

Choice of optimization algorithm
Computing derivatives efficiently
Aerodynamic shape optimization
Aerostructural design optimization
Summary and ongoing work

Gradient-based optimization requires gradient of objective and Jacobian of constraints

$$egin{aligned} & \min_{x \in \mathbb{R}^n} & f(x,y(x)) \ & ext{s.t.} & h(x,y(x)) = 0 \ & g(x,y(x)) \leq 0 \end{aligned}$$

x: design variables

y: state variables, determined implicitly by solving R(x, y(x)) = 0

Need df/dx (and also dh/dx, dg/dx).

Methods for computing derivatives

Monolithic Black boxes input and outputs	Finite-differences	$\frac{\mathrm{d}f}{\mathrm{d}x_j} = \frac{f(x_j + h) - f(x)}{h} + \mathcal{O}(h)$		
	Complex-step	$\frac{\mathrm{d}f}{\mathrm{d}x_j} = \frac{\mathrm{Im}\left[f(x_j + ih)\right]}{h} + \mathcal{O}(h^2)$		
Analytic Governing eqns state variables	Direct Adjoint	$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \begin{bmatrix} \partial R \\ \partial y \end{bmatrix}^{-1} \frac{\partial R}{\partial x}$		
Algorithmic differentiation <i>Lines of code</i> <i>code variables</i>	Forward $\begin{bmatrix} 1 & 0 & \cdots & 0 \\ -\frac{\partial T_2}{\partial t_1} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ -\frac{\partial T_n}{\partial t_1} & \cdots & -\frac{\partial T_n}{\partial t_{n-1}} \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & \dots & 0 \\ \frac{\mathrm{d}t_2}{\mathrm{d}t_1} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \frac{\mathrm{d}t_n}{\mathrm{d}t_1} & \dots & \frac{\mathrm{d}t_n}{\mathrm{d}t_{n-1}} \end{bmatrix} = I = \begin{bmatrix} 1 - \frac{\partial T_2}{\partial t_1} \dots & -\frac{\partial T_n}{\partial t_1} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -\frac{\partial T_n}{\partial t_{n-1}} \\ 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \frac{\mathrm{d}t_2}{\mathrm{d}t_1} \dots & \frac{\mathrm{d}t_n}{\mathrm{d}t_1} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & 1 & \frac{\mathrm{d}t_n}{\mathrm{d}t_{n-1}} \\ 0 & \dots & 0 & 1 \end{bmatrix}$		

[Martins and Hwang, AIAA Journal, 2013] [Martins et al., ACM TOMS, 2003]

Analytic methods evaluate derivatives by linearizing the governing equations

Need df/dx (and also dh/dx, dg/dx), f(x, y(x))

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x}$$

Derivative of the governing equations: R(x, y(x)) = 0

$$\frac{\mathrm{d}R}{\mathrm{d}x} = \frac{\partial R}{\partial x} + \frac{\partial R}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \quad \Rightarrow \quad \frac{\partial R}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\partial R}{\partial x}$$

Substitute result into the derivative equation

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \left[\frac{\partial R}{\partial y}\right]^{-1} \frac{\partial R}{\partial x}$$

$$\psi$$

Cost of adjoint evaluation is independent of the number of design variables

High-Fidelity Multidisciplinary Design Optimization for the Next Generation of Aircraft

Choice of optimization algorithm
Computing derivatives efficiently
Aerodynamic shape optimization
Aerostructural design optimization
Summary and ongoing work

Wing aerodynamic shape optimization requires a high-fidelity model

Navier–Stokes equations

$$\frac{\partial w}{\partial t} + \frac{1}{A} \oint F_i \cdot \hat{n} dl - \frac{1}{A} \oint F_v \cdot \hat{n} dl = 0$$

$$w = \begin{bmatrix} \rho \\ \rho u_{1} \\ \rho u_{2} \\ \rho E \end{bmatrix} \quad F_{i_{1}} = \begin{bmatrix} \rho u_{1} \\ \rho u_{1}^{2} + p \\ \rho u_{1} u_{2} \\ (E + p) u_{1} \end{bmatrix} \quad F_{v_{1}} = \begin{bmatrix} 0 \\ \tau_{11} \\ \tau_{12} \\ u_{1}\tau_{11} + u_{2}\tau_{12} - q_{1} \end{bmatrix}$$
$$\tau_{11} = (\mu + \mu_{t}) \frac{M_{\infty}}{Re} \frac{2}{3} (2u_{1} - u_{2})$$
$$q_{1} = -\frac{M_{\infty}}{Re(\gamma - 1)} (\frac{\mu}{Pr} + \frac{\mu_{t}}{Pr_{t}}) \frac{\partial a^{2}}{\partial x_{1}}$$

[Shockwaves on wings]

© 2012 J.R.R.A. Martins

Reynolds-averaged Navier–Stokes equations are solved in a 3D domain

Combine flow solver, adjoint solver, and gradient-based optimizer to enable design

Fast mesh deformation handles large design changes

Derivatives are obtained using the algorithmic differentiation adjoint (ADjoint)

Solve the governing equations

R(x,y(x))=0

form and solve the adjoint equations

$$\left[\frac{\partial R}{\partial y}\right]^T \psi = -\frac{\partial f}{\partial y}$$

and compute the derivatives

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} + \psi^T \frac{\partial R}{\partial x}$$

[Mader et al., AIAA Journal, 2008]

Common Research Model (CRM) wing is a new aerodynamic shape optimization benchmark

AIAA Aerodynamic Design Optimization Discussion Group (ADODG) Wing aerodynamic shape optimization requires hundreds of design variables

Want to minimize drag by varying shape, subject to lift and geometric constraints

	Function/variable	Description	Quantity
minimize	C_D	Drag coefficient	
with respect to	$lpha _{z}$	Angle of attack FFD control point <i>z</i> -coordinates Total design variables	$egin{array}{c} 1 \\ 720 \\ 721 \end{array}$
subject to	$C_{L} = 0.5$ $C_{M_{y}} \ge -0.17$ $t \ge 0.25t_{\text{base}}$ $V \ge V_{\text{base}}$ $\Delta z_{\text{TE,upper}} = -\Delta z_{\text{TE,lower}}$ $\Delta z_{\text{LE,upper,root}} = -\Delta z_{\text{LE,lower,root}}$	Lift coefficient constraint Moment coefficient constraint Minimum thickness constraints Minimum volume constraint Fixed trailing edge constraints Fixed wing root incidence constraint Total constraints	$1 \\ 1 \\ 750 \\ 1 \\ 15 \\ 1 \\ 769$

Started with a good design and made it 8.5% better [Lyu et al., AIAA Journal, 2014]

Now, let's start with a bad design!

Now, let's start with a really bad design!

The initial and optimized geometries and grids are available with the AIAA Journal paper as supplemental data

Previous Article	ARTICLES IN ADVANCE				Next Article		
Add to Fave	Add to Favorites Ema			Download to Citation Manager Track		c Citations	
Abstract	PDF	PDF Plu	<u>s (3,068 KB)</u>	Supplemental Mate	<u>erial</u>	Cited By	

Zhoujie Lyu, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. "Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark"., doi: 10.2514/1.J053318

Current Issue Available Issues Articles in Advance

Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark

Zhoujie Lyu<u></u>Gaetan K. W. Kenway<u></u>Joaquim R. R. A. Martins<u></u> Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109

*Ph.D. Candidate, Department of Aerospace Engineering. Student Member AIAA.

†Postdoctoral Research Fellow, Department of Aerospace Engineering. Member AIAA.

‡Associate Professor, Department of Aerospace Engineering. Associate Fellow AIAA.

Sections: Choose 🗘

ABSTRACT

Choose

. I

Despite considerable research on aerodynamic shape optimization, there is no standard benchmark problem allowing researchers to compare results. This work addresses this issue by solving a series of aerodynamic shape optimization problems based on the Common Research Model wing benchmark case defined by the Aerodynamic Design Optimization Discussion Group. The aerodynamic model solves the Reynolds-averaged Navier-Stokes equations with a Spalart-Allmaras turbulence model. A gradient-based optimization algorithm

3D-printed models colored with C_p distributions

High-Fidelity Multidisciplinary Design Optimization for the Next Generation of Aircraft

Choice of optimization algorithm

- Computing derivatives efficiently
- Aerodynamic shape optimization
- Aerostructural design optimization
- Summary and ongoing work

Wing design demands more than just aerodynamics

Want to optimize both aerodynamic shape and structural sizing, with high-fidelity

Sequential optimization is equivalent to coordinate descent

Sequential optimization fails to find the multidisciplinary optimum

[Chittick and Martins, Struct. Multidiscip. O., 2008]

MDO for Aircraft Configurations with High-fidelity (MACH)

Python user script

Setup up the problem: objective function, constraints, design variables, optimizer and solver options

Optimizer interface		Aerostructural solver		Geometry modeler
<i>pyOpt</i>		<i>AeroStruct</i>		<i>DVGeometry/GeoMACH</i>
Common interface to various		Coupled solution methods and coupled		Defines and manipulates
optimization software		derivative evaluation		geometry, evaluates derivatives
SQP	Other optimizers	Structural solver <i>TACS</i> Governing and adjoint equations	Flow solver <i>SUMad</i> Governing and adjoint equations	

- Underlying solvers are parallel and compiled
- Coupling done through memory only
- Emphasis on clean Python user interface
- Solver independent

[Kenway et al., AIAA J., 2014]

[Kennedy and Martins, Finite Elem. Des., 2014]

Adjoint method efficiently computes gradients with respect to thousands of variables

[Kenway et al., AIAA J., 2014]

A smooth function and accurate gradients keep the optimizer happy

Let's do aerostructural optimization!

NASA-Michigan undeformed Common Research Model (uCRM)

Optimize 973 "aerodynamic" and structural sizing design variables

Objective and design variables

	Function/variable	Description	Quantity
minimize	β Fuel burn + $(1 - \beta)$ TOGW		
with respect to	$x_{ m span}$	Wing span	1
	$x_{ m sweep}$	Wing sweep	1
	$x_{ m chord}$	Wing chord	1
	$x_{ m twist}$	Wing twist	8
	$x_{ m airfoil}$	FFD control points	192
	x_{alpha_i}	Angle of attack at each flight condi-	12
	- •	tion	
	x_{η_i}	Tail rotation angle at each flight con-	12
		dition	
	x_{throttle_i}	Throttle setting for each cruise flight	7
		condition	
	$x_{ m altitude}$	Cruise altitude	1
	$X_{ m CG}$	CG position	1
	$x_{ m skin \ pitch}$	Upper/lower stiffener pitch	2
	$x_{ m spar \ pitch}$	Le/Te Spar stiffener pitch	2
	$x_{ m ribs}$	Rib thickness	45
	$x_{ m panel\ thick}$	Panel thickness Skins/Spars	172
	$x_{ m stiff\ thick}$	Panel stiffener thickness Skins/Spars	172
	$x_{ m stiff\ height}$	Panel stiffener height Skins/Spars	172
	$x_{\rm panel\ length}$	Panel length Skin/Spars	172
		Total design variables	973

Constraints

subject to $L = n_i W$ $C_{M_{y_i}} = 0.0$ T = D $1.08D - T_{\rm max} < 0$ $t_{\rm LE}/t_{
m LE_{Init}} \ge 1.0$ $t_{\mathrm{TE}}/t_{\mathrm{TE}_{\mathrm{Init}}} \geq 1.0$ $\mathcal{V}_{\mathrm{wing}} > \mathcal{V}_{\mathrm{fuel}}$ $x_{\rm CG} - 1/4MAC = 0$ $L_{\text{panel}} - x_{\text{panel length}} = 0$ $KS_{stress} \leq 1$ $KS_{buckling} \leq 1$ $\mathrm{KS}_{\mathrm{buckling}} \leq 1$ $KS_{buckling} \leq 1$ $KS_{buckling} \leq 1$ $\left| x_{\text{panel thick}_i} - x_{\text{panel thick}_{i+1}} \right| \le 0.0025$ $\left|x_{\text{stiff thick}_i} - x_{\text{stiff thick}_{i+1}}\right| \le 0.0025$ $x_{\mathrm{stiff \ height}_i} - x_{\mathrm{stiff \ height}_{i+1}}$ $x_{\text{stiff thick}} - x_{\text{panel thick}} < 0.005$ $\Delta z_{\mathrm{TE,upper}} = -\Delta z_{\mathrm{TE,lower}}$ $\Delta z_{\rm LE,upper} = -\Delta z_{\rm LE,lower}$

Lift constraint	12
Trim constraint	12
Thrust constraint	7
Excess thrust constraint	7
Leading edge radius	20
Trailing edge thickness	20
Minimum fuel volume	1
CG location at $1/4$ chord MAC	1
Target panel length	172
2.5 g Yield stress	4
2.5 g Buckling	3
-1.0 g Buckling	3
1.78 g Yield stress	3
1.78 g Buckling	4
Skin thickness adjacency	168
Stiffener thickness adjacency	168
Stiffener height adjacency	168
Maximum stiffener-skin difference	172
Fixed trailing edge	8
Fixed leading edge	8
Total constraints	961

Considering multiple flight conditions is required for a practical design

- 7 cruise conditions for performance
- 2 off design conditions
- 3 maneuver condition for structural constraints
- Aircraft trimmed at all conditions

This framework enables designers to perform optimal objective and technology tradeoffs

[Kennedy et al., AIAA 2014-0596]

Boeing 777x will use folding wing tips to fit in current airport gates

High-Fidelity Multidisciplinary Design Optimization for the Next Generation of Aircraft

Choice of optimization algorithm

- Computing derivatives efficiently
- Aerodynamic shape optimization
- Aerostructural design optimization
- Summary and ongoing work

Summary

- Efficient and accurate gradient computation via adjoints methods
- Robust aerodynamic shape optimization
- Extended adjoint method to multiple disciplines
- Aerostructural design optimization with respect to 1000 design variables
- Muito mais a fazer!

Currently using these tools to refine the next generation of aircraft

Flexible high-aspect ratio wings [Kenway and Martins, AIAA 2015-2790]

Truss-braced wing [Ivaldi, et al., AIAA 2015-3436]

Blended-wing body [Lyu and Martins, *Journal of Aircraft*, 2014]

Tow-steered composite [Brooks et al., 2015]

We are now extending the coupled-adjoint approach and developing a general framework for MDO

[Martins and Hwang, AIAA Journal, 2013]

Vamos a optimizar!

John Hwang Peter Lyu Gaetan Kenway

Graeme Kennedy

http://mdolab.engin.umich.edu/publications

More information:

MDOIab Newsletter-Fall 2014

Dear Friend,

Welcome to the MDOlab newsletter, an update on research and open source software that we send a few times a year. You are receiving this because I think you are interested in numerical optimization, MDO, engineering design, or aircraft design. If this is not the case, feel free to <u>unsubscribe</u>. If you know someone who might like to subscribe, please forward them this newsletter. Best regards, <u>Joacuim Martins</u>

Latest publications

Wing aerodynamic shape optimization benchmark

The AIAA <u>Aerodynamic Design Optimization Discussion</u> <u>Group</u> developed a series of benchmark cases. In this paper, we solve the RANS-based wing optimization problem, try to find multiple local minima, and solve a number of related wing design optimization problems. The initial and optimized geometries and meshes are <u>provided here</u>.

[Paper] [Preprint] [Optimization movie]

Aerodynamic design optimization of a blended-wing body aircraft

This builds on our previous work on <u>stability-constrained flying</u> wing optimization. A series of RANS-based aerodynamic design optimization studies shows the tradeoffs between drag, trim, and stability for the NASA/Boeing BWB. The photo on the left shows <u>3D-printed models with pressure colormaps</u>.

[Paper] [Preprint]

Satellite multidisciplinary design optimization benchmark

In collaboration with NASA and the <u>Michigan Exploration</u> Lab, we developed a new large-scale benchmark MDO problem, and solved a problem with 25,000 design variables and 2.2 million state variables by optimizing the data downloaded from a CubeSat subject to operational and physical constraints. This problem is now a <u>plugin</u> in the <u>OpenMDAO</u> open source project.

[Paper] [Preprint]

Download our publications and subscribe to our newsletter at:

http://mdolab.engin.umich.edu

UNIVERSITY of MICHIGAN

Relevant publications

- J. R. R. A. Martins and J. T. Hwang. Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA Journal, 51(11):2582–2599, November 2013. doi: 10.2514/1.J052184.
- 2. J. R. R. A. Martins and A. B. Lambe. Multidisciplinary design optimization: A survey of architectures. AIAA Journal, 51(9):2049–2075, September 2013. doi:10.2514/1.J051895.
- J. T. Hwang, D. Y. Lee, J. W. Cutler, and J. R. R. A. Martins. Large-scale multidisciplinary optimization of a small satellite's design and operation. Journal of Spacecraft and Rockets, 51(5):1648–1663, September 2014. doi: 10.2514/1.A32751.
- 4. G. K. W. Kenway and J. R. R. A. Martins. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. Journal of Aircraft, 51(1):144–160, January 2014. doi:10.2514/1.C032150.
- G. K. W. Kenway, G. J. Kennedy, and J. R. R. A. Martins. Scalable parallel approach for high-fidelity steadystate aeroelastic analysis and derivative computations. AIAA Journal, 52(5):935–951, May 2014. doi: 10.2514/1.J052255.
- R. E. Perez, P. W. Jansen, and J. R. R. A. Martins. pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization. Structural and Multidisciplinary Optimization, 45(1):101–118, January 2012. doi:10.1007/s00158-011-0666-3.
- J. T. Hwang, S. Roy, J. Y. Kao, J. R. R. A. Martins, and W. A. Crossley. Simultaneous aircraft allocation and mission optimization using a modular adjoint approach. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Kissimmee, FL, Jan. 2015. AIAA 2015-0900.
- 8. J. Y. Kao, J. T. Hwang, J. R. R. A. Martins, J. S. Gray, and K. T. Moore. A modular adjoint approach to aircraft mission analysis and optimization. In Proceedings of the AIAA Science and Technology Forum and Exposition (SciTech), Kissimmee, FL, January 2015. AIAA 2015-0136.