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Numerical methods have been playing an
Increasing role in engineering analysis
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Once numerical simulations are developed,
they can be used for design optimization
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Complex systems require the consideration of
multiple disciplines, hence MDO was born
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Research in the Multidisciplinary Design Optimization
Laboratory is divided into two main thrusts

Fundamental MDO algorithms

s ‘ Applications of MDO




With 90,000 daily flights, improvements
In aircraft performance has a huge impact




Airplane fuel burn per seat has decreased
by over 80% since the first jet
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Drag and weight are the primary
aircraft performance metrics

Lift
400 tons

Thrust Drag

24 tons

Weight



The next generation of aircraft demands
even more of the design process

e Highly-flexible high aspect ratio wings

 Unknown design space and interdisciplinary trade-oft:
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Want to optimize both aerodynamic shape and
structural sizing, with high-fidelity
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3 major challenges
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systems

W2 40000 ft Wi

/ Wo s

/

Wos

: 2666 nm L

Wis

2666 nm L

3. Large numbers of design

2667 nm .

variables, design points and
constraints



High-Fidelity Multidisciplinary Design Optimization
for the Next Generation of Aircraft

» Choice of optimization algorithm
» Computing derivatives efficiently
» Aerodynamic shape optimization
» Aerostructural design optimization

» Summary and ongoing work



High-Fidelity Multidisciplinary Design Optimization
for the Next Generation of Aircraft

» Choice of optimization algorithm
» Computing derivatives efficiently
» Aerodynamic shape optimization
» Aerostructural design optimization

» Summary and ongoing work



Gradient-based optimization is the only hope
for large numbers of design variables
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Gradient-based optimization requires
gradient of objective and Jacobian of constraints

min £(x, y(x))
st. h(x,y(x))=0
g(x, y(x)) <0

x. design variables
y. state variables, determined implicitly by solving R(x, y(x)) =0

Need df/dx (and also dh/dx, dg/dx)



Methods for computing derivatives

Monolithic Finite-differences  gr  f(x 1 ) — f(x) o
Black boxes dx; h +Oh)
input and outputs
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[Martins and Hwang, AIAA Journal, 2013]

[Martins et al., ACM TOMS, 2003]


http://mdolab.engin.umich.edu/content/review-and-unification-discrete-methods-computing-derivatives-single-and-multi-disciplinary
http://mdolab.engin.umich.edu/content/complex-step-derivative-approximation-0

Analytic methods evaluate derivatives
by linearizing the governing equations

Need df/dx (and also dh/dx, dg/dx), f(x,y(x))

df  of  of dy
dx 9x 9dy dx

Derivative of the governing equations: R(x,y(x)) =0
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Cost of adjoint evaluation is independent
of the number of design variables
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Wing aerodynamic shape
optimization requires a
high-fidelity model

Navier—Stokes equations
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[Shockwaves on wings]
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Reynolds-averaged Navier—Stokes equations
are solved in a 3D domain

Mach=0.85
C,=0.63

7’

Mach=0.89
C,=0.454



Combine flow solver, adjoint solver, and
gradient-based optimizer to enable design

Optimizer |
(SNOPT) j
Geometry
and mesh ‘

Flow solver

f Rx,y(x) =0 [V —

Adjoint solver
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Fast mesh deformation handles large design changes
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Derivatives are obtained using the
algorithmic differentiation adjoint (ADjoint)

Solve the governing equations

R(x,y(x)) =0

form and solve the adjoint equations
OR1' ,o O
ay| oy

and compute the derivatives
dar _of  ,79R
dx 9x = Ox

[Mader et al., AIAA Journal, 2008]
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Common Research Model (CRM) wing is a new
aerodynamic shape optimization benchmark

AlAA
Aerodynamic Design Optimization
Discussion Group (ADODG) 02 0 0.2




Wing aerodynamic shape optimization
requires hundreds of design variables




Want to minimize drag by varying shape,
subject to lift and geometric constraints

Function/variable Description Quantity
minimize Cp Drag coefficient
with respect to « Angle of attack 1
2 FFD control point z-coordinates 720
Total design variables 721
subjectto Cr, = 0.5 Lift coefficient constraint 1
C M, = —0.17 Moment coefficient constraint 1
t > 0.25tpa5e Minimum thickness constraints 750
V > Vibase Minimum volume constraint 1
AZTE upper = —AZTE Jower Fixed trailing edge constraints 15
AZLEupperroot = —AZLElowerroot  IiXed wing root incidence constraint 1
Total constraints 769

[Lyu et al., AIAA Journal, 2014]


http://mdolab.engin.umich.edu/content/aerodynamic-shape-optimization-investigations-common-research-model-wing-benchmark

Started with a good design and made it
8.5% better lLyu et al., AIAA Journal, 2014]
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Now, let’s start with a bad design!
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Now, let’s start with a really bad design!

C, 10 05 00 05

Random shape Shape and

and twist initial 1 twist optimized
o C, = 0.086463

C, - 0.094548 2 - noenn
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The initial and optimized geometries and grids
are available with the AIAA Journal paper as supplemental data
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3D-printed models colored with C, distributions
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Wing design demands
more than just aerodynamics

8Shape on giound |

B787 wing at OSL and en route to JFK - © 2013 J.R.R.A. Martins



Want to optimize both aerodynamic shape and
structural sizing, with high-fidelity
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Sequential optimization is equivalent to
coordinate descent

MDO ..
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Sequential optimization fails to find the
multidisciplinary optimum
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[Chittick and Martins, Struct. Multidiscip. O., 2008]
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MDO for Aircraft Configurations with High-fidelity

(MACH)

Python user script

Setup up the problem: objective function, constraints, design variables, optimizer and solver options

Optimizer interface
pyOpt

Common interface to various
optimization software

Aerostructural solver

AeroStruct

Coupled solution methods and coupled

derivative evaluation

Geometry modeler
DVGeometry/GeoMACH

Defines and manipulates
geometry, evaluates derivatives

SQP Other

optimizers

Structural solver
TACS

Governing and
adjoint equations

Flow solver
SUMad

Governing and

adjoint equations

» Underlying solvers are parallel and compiled

» Coupling done through memory only

» Emphasis on clean Python user interface

» Solver independent

[Kenway et al., AIAA J., 2014]

[Kennedy and Martins, Finite Elem. Des., 2014]



http://www.sciencedirect.com/science/article/pii/S0168874X14000730
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Adjoint method efficiently computes gradients
with respect to thousands of variables

[Kenway et al.,
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A smooth function and accurate gradients
keep the optimizer happy
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Let’s do aerostructural optimization!

Stress Cp
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0.80 0.60
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NASA-Michigan undeformed Common Research Model (uUCRM)



Optimize 973 “aerodynamic” and
structural sizing design variables

Upper skin pitch <
Lower skin pitch y
Rib stiffener pitch Y

Rib stiffener height

Spar stiffener pitch .

Sgar stiffener ﬁeight 3 Variables per patch:

Skin thickness
Stiffener height

Stiffener width Tail rotation angle

192 FFD wing coordinates

-— ——=8 Twi
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Span —-



Objective and design variables

Function/variable Description Quantity
minimize (Fuel burn + (1 — 8)TOGW
with respect to  Zgpan Wing span 1
Tsweep Wing sweep 1
Tchord Wing chord 1
Tiwist ng twist 8
Tairfoil FFD control points 192
Talpha, Angle of attack at each flight condi- 12
tion
Ty, Tail rotation angle at each flight con- 12
dition
Tthrottle; Throttle setting for each cruise flight 7
condition
Taltitude Cruise altitude 1
Xco CG position 1
Zekin pitch Upper/lower stiffener pitch 2
Tepar pitch Le/Te Spar stiffener pitch 2
Tribs Rib thickness 45
Tpanel thick Panel thickness Skins/Spars 172
Tstiff thick Panel stiffener thickness Skins/Spars 172
Tstiff height Panel stiffener height Skins/Spars 172
Zpanel length Panel length Skin/Spars 172
Total design variables 973



Constraints

subject to

Ch,, = 0.0
T'=D

1.08D — Tiax < 0
tLE/tLEn;, = 1.0
tte/tTE,,, = 1.0
vwing > vfuel

rce — 1/4MAC =0

Lpanel — Tpanel length = 0
KSstress < 1

KSpuckling <1
Ksbuckling < 1
KSbuckling < 1

KSpuckling < 1
< 0.0025

Tstiff thick; — Tstiff thick.q, | < 0.0025

Tpanel thick; — Lpanel thick,

Tstiff height, — Lstiff height,
Tstiff thick — Lpanel thick < 0.005
AzTE,upper = —AZTE,lower
AzLE,upper — _AzLE,lower

Lift constraint

Trim constraint

Thrust constraint
Excess thrust constraint
Leading edge radius
Trailing edge thickness
Minimum fuel volume
CG location at 1/4 chord MAC
Target panel length

2.5 g Yield stress

2.5 g Buckling

-1.0 g Buckling

1.78 g Yield stress

1.78 g Buckling

Skin thickness adjacency
Stiffener thickness adjacency
Stiffener height adjacency

Maximum stiffener-skin difference
Fixed trailing edge
Fixed leading edge
Total constraints

12
12

20
20

172

S

= W W W

168
168
168
172

961



Considering multiple flight conditions is required

for a practical design

» 7 cruise conditions for
performance

» 2 off design conditions

» 3 maneuver condition for
structural constraints

» Aircraft trimmed at all
conditions
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TOGW optimized
TOGW:289553 kg

Fuel burn: 97551 kg

L/D: 19.55

Aspect ratio: 9.02
Altitude: 34000 ft

Wing mass: 41535 kg

Normalized Lift
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TOGW optimized
TOGW:284800 kg
Fuel burn: 101300 kg
L/D:18.9

Aspect ratio: 9.06
Altitude: 32000 ft

Normalized Lift )
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Fuel burn optimized
TOGW: 294971 kg
Fuel Burn: 88300 kg
L/D: 23.1

Aspect ratio: 12.14
Altitude: 38600 ft
Wing mass: 56200 kg
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This framework enables designers to perform

optimal

[Kennedy et al.,

objective and technology tradeofts
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Boeing 777x will use folding wing tips to
fit in current airport gates
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Summary

» Efficient and accurate gradient computation via
adjoints methods

» Robust aerodynamic shape optimization
» Extended adjoint method to multiple disciplines

» Aerostructural design optimization with respect to
1000 design variables

» Muito mais a fazer!



Currently using these tools to refine
the next generation of aircraft

=~ g —

Flexible high-aspect ratio wings
[Kenway and Martins, AIAA 2015-2790]

Blended-wing body
[Lyu and Martins, Journal of Aircraft, 2014 ]

Truss-braced wing
[lvaldi, et al., AIAA 2015-3436]

Tow-steered composite
[Brooks et al., 2015]



We are now extending the coupled-adjoint approach
and developing a general framework for MDO

Inputs States Outputs

R(U):O ; u:[xla---733%7?/17'°°7ym7f17°°°7fp]T

T T
OR du T OR " du
Ou dr Oou dr
A 0 0 A 0 0 A 0 0
OR OR dy dy —
- 5y 0 = - 0 0 7 0
OF OF df df
- %y 7 = - 7 0 0 7

eeERIMIDIANO

[Martins and Hwang, AIAA Journal, 201 3]



« \‘ ‘!
Vv Y 8 N N
mmmau s 2

- e t—] - . ]

AEROSPACE
ENGINEERING

E—
=_= (= UNIVERSITY of MICHIGAN

http://mdolab.engin.umich.edu/publications



http://mdolab.engin.umich.edu/publications
http://mdolab.engin.umich.edu/publications
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MDOIlab Newsletter—Fall 2014

Dear Friend,

Welkcome 10 the MDOlab newsletter, an update on research and open sowrce software that we
send a few tmes a year. You are receiing this because | think you are interested in numercal
optimization, MDO, engineering design, or aircraft design. If this is not the case, feel free 10
unsubscribe. If you know someone who might ike to subscribe, please forward them this

newsketter. Best regards,
Subscribe
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Latest publications

Wing aerodynamic shape optimization benchmark

The AIAA Aerodynamic Design Optimization Discussion
Group developed a senes of benchmark cases, in this
paper, we solve the RANS-based wing optimszation problem,
try 10 find multiple local minima, and solve a number of
related wing design oplimization problems. The initial and
oplimized geometries and meshes are provided here.

[Paper] [Preprint] [ Optimization movie )

Aerodynamic design optimization of a blended-wing body aircraft

wing oplimezation. A series of RANS-basad aerodynamic
design optimzabion studies shows the tradeolls between
drag, trim, and stabiity for the NASA/Boeing BWB. The photo
on the left shows 3D-printed models with pressure colormaps.

[Paper] [Preprint]

Satellite multidisciplinary design optimization benchmark

In collaboration with NASA and the Michigan Exploration
Lab. we developed a new large-scale benchmark MDO
problem, and solved a problem with 25 000 design variables
and 2.2 million state variables by oplimizing the data
downloaded from a CubeSat subject to operational and
physical constraints. This peoblem is now a plugin in the
OpanMDAQ open source project.

[Paper] [Preprint)

This builds on our previous work on stability-constrained flying

Download our publications and
subscribe to our newsletter at:

http://mdolab.engin.umich.edu

AEROSPACE
ENGINEERING

UNIVERSITY of MICHIGAN
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