
Supervision for drone flight safety
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Context and problem
Introduction

Me: My research:

• Fault tolerant navigation

– Sensor faults (GPS, IMU, ...)

– Actuator faults (motors, ...)

• State estimation ! Fault detection !
Reconfiguration ! Emergency procedure

• Application to a hexarotor drone
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Context and problem
Objectives

• Develop methods for robust drone navigation through:

– The detection of faults

– The localisation of their origin

– The identification of their characteristics

– The reduction of their impact on the continued navigation

• Define a modular architecture capable of performing the above tasks.
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Method and results
Detection / Localisation / Identification

We consider the translational kinematics:

(
Ẋ = V

V̇ = A

Measurements:
(

A

m

= A + v

A

X

m

= X + B + w

X

Hypothesis: If B = 0, the system is observable.

B can be a bias, a drift, etc.

)

8
><

>:

Ẋ = V

V̇ = A

m

� v

A

Ḃ = v

B

Measurement:
n

X

m

= X + B + w

X

! The system is no
longer observable (in a
Kalman sense)

Typical solution: GLR[1]

Main hypothesis:

B ! BY (t � T ) : A fault appears at time T

! System is (weakly) observable if T is known

Estimation of T in a max. likelihood sense.

Estimation of the state X in a max.
likelihood sense, given T = T̂ .

GLR: Generalized Likelihood Ratio

[1] Willsky, Jones, 1974
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Method and results
Contribution: GLR for multiple frequent faults

Let’s start from the back with some results...

GLR (Willsky): Nominal GLR defined by
Willsky.

MRLS-GLR: New GLR allowing
detection/estimation of multiples faults,
based on RLS (recursive least squares)
estimation.

MLS-GLR: New GLR allowing
detection/estimation of multiples faults,
based on LS (least squares) estimation.
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Method and results
Contribution: GLR for multiple frequent faults

Willsky’s GLR algorithm:

Compromise between fast detection and
precise estimation of the fault.

Corrected state x̂

c

becomes unstable at
frequent faults.

New MLS/MRLS-GLR[2] algorithm:

Better compromise between speed and
precision of the fault estimation.

Corrected state more robust since the fault
estimation is refined until it is no longer
observable.

[2] Öman Lundin, Mouyon, Manecy, 2017
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Method and results
Attitude estimation: A non-linear problem

R is a rotation matrix from the body frame (B)
to the inertial frame (I): V

B

= R

T

V

I

Non-linear kinematics:
(

Ṙ = f (R, !)

!
m

= ! + B! + noise (Gyroscope)
(

M

m

= M

B

+ B

M

+ noise (Magnetometer)

A
m

= A
B

+ BA + noise (Accelerometer)

Assumption:

(
A
B

= R

TA
I

M

B

= R

T

M

I

(Ȧ
I

= Ṁ

I

= 0)

Problem:

B! is observable if B
M

= B

A

= 0.

B

A

and B

M

are not observable.

Solution:

Detect the presence of B
A

and B

M

and
adapt the attitude estimation.

General approach:

1 A set of sensor models based on expected
sensor performance are used to estimate the
sensor output (acc. and mag.).

2 The estimation error is used to determine
whether a bias (B

A

or B
M

) is present on
the sensor output.

3 A data consolidation stage decides whether
to use the estimated sensor data or the
actual measurement for the attitude update,
or to inhibit correction of the attitude.

4 An attitude filter based on an EKF
formalism corrects the inclination and the
yaw estimates by using the consolidated
sensor information.
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Method and results
Contribution: Fault tolerant estimation architecture

Sensor models Consolidation Attitude filter
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Method and results
Contribution: Decoupled attitude filter

The attitude filter is based on an
EKF-formalism, i.e. a linearised
predictor-corrector.

The gyroscope bias is modelled as a
saturated white noise process.

The consolidated acceleration is used for
inclination update and associated gyroscope
biases B!,1 and B!,2.

The consolidated acceleration is used for
yaw update and associated gyroscope bias
B!,3.

Attitude correction is inhibited if the sensor
integrity check is not passed.

Prediction

Rk

Acc. OK Mag. OK

Inclination cor-
rection with Ac

Inclination cor-
rection with Mc

Mag. OK

Heading correc-
tion with Mc

R+
k+1

no

yes yes

no

yes

no

Rk+1
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Method and results
Attitude estimation: Simulation results
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Conclusions/Perspectives

• Integration of detection/estimation (modified GLR, ...) and detection/isolation
(FT-EKF, ...) methods for robust full state estimation (position, velocity,
attitude).

• Creation of a modular estimation architecture for robust navigation of multi
rotor drones.
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Publications

Gustav Öman Lundin, Philippe Mouyon, Augustin Manecy
A GLR algorithm for multiple consecutive measurement bias estimation,
REDUAS 2017

17/19



Questions ?
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Appendix
Attitude estimation: Sensor bias detection

Method applied to detect B
A

(same applies to
B

M

):

1

8
>>><

>>>:

Performance model for A
m

(and M

m

):

Ȧ
B
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B

+ Ȧ
I

where Ȧ
I

= � 1
⌧
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Kalman filter to estimate A

B

:
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Statistical test on residual A
m

� Â
B

19/19


	Context and problem
	Method and results
	Conclusions/Perspectives
	Publications

