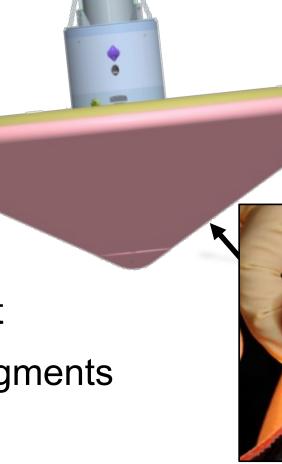


Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators

9th International Planetary Probe Workshop

16-22 June 2012, Toulouse

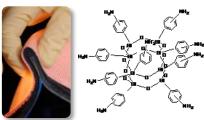
Joseph A. Del Corso, Walter E. Bruce III, Stephen J. Hughes, John A. Dec, Marc D. Rezin, Mary Ann B. Meador, Haiquan Guo, Douglas G. Fletcher, Anthony Calomino, F. McNeil Cheatwood,


NASA Langley Research Center

Joseph.A.DelCorso@nasa.gov

Outline

- Flexible Thermal Protection Systems (FTPS) Overview
- Ground Testing
- Thermal Modeling
- Margins Policy
- Material Catalysis
- Material Lifecycle Testing
- Advanced TPS Development
- Conclusions and Acknowledgments



HIAD-FTPS Integration Overview

Langley Research Center

STRUCTURAL AND THERMAL SYSTEMS BRANCH

Flexible TPS Development and Qualification

$$\rho C_p \frac{\partial T}{\partial t} - \frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) = 0$$

Sub-Orbital Flight Testing

Inflatable Reentry Vehicle Experiments System
Demonstration

High-Energy Atmospheric Re-entry Test (HEART)

2015

Future Missions

Robotic Missions

Crewed Earth
Return

DoD Applications

Technology
Development &
Risk Reduction

2012

2013

FTPS advances technologies supporting flight project needs

FTPS Overview

STRUCTURAL AND THERMAL SYSTEMS BRANCH

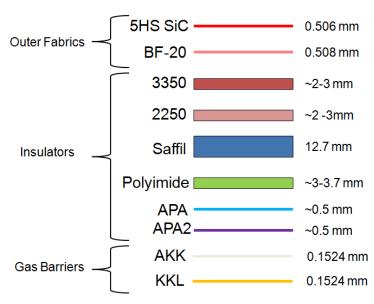
Development of FTPS for inflatable re-entry vehicles

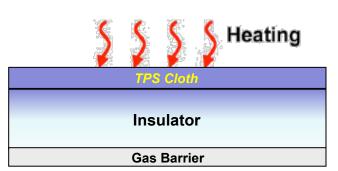
- Multi-center NASA effort with industry and academia partnerships
- Developing, characterizing, and testing emerging concepts and building analysis tools for new flexible TPS layups
- FTPS are designed to maintain structural component interface temperatures and survive reentry aerothermal loads
 - FTPS are designed to carry the entry mechanical and thermal loads

Flexible Thermal Protection Function

Heat Rate

Refractory Cloth

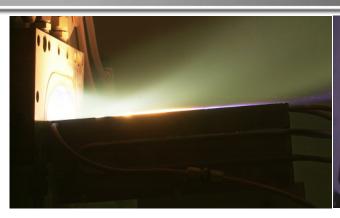

Heat Load

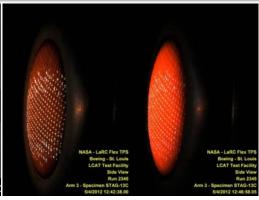

Insulator

Permeability

Gas Barrier

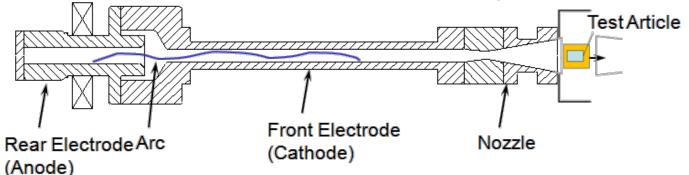
Modular design using functional layers





Ground Testing at Large-Core Arc Tunnel The Boeing Company Langley Research Center

STRUCTURAL AND THERMAL SYSTEMS BRANCH

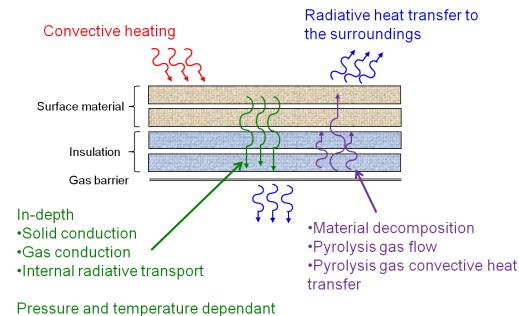


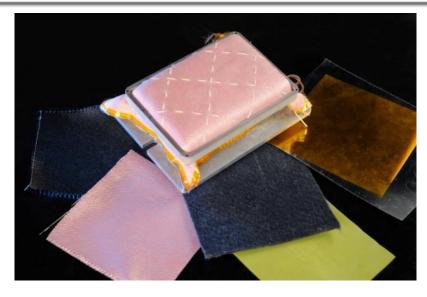
Ground Test Objectives

- Develop test techniques for evaluation of FTPS samples
- Test coupon samples at stagnation and shearing conditions
- Test at relevant mission heat flux and pressure

LCAT – Huels arc heater

- 18" and 27" cathodes with secondary air and 12" mixing section
- Heat flux range 5-150 W/cm²
- Surface pressure range 1-9 kPa
- Shear range 30-270 Pa
- Reacting flow




Thermal Modeling

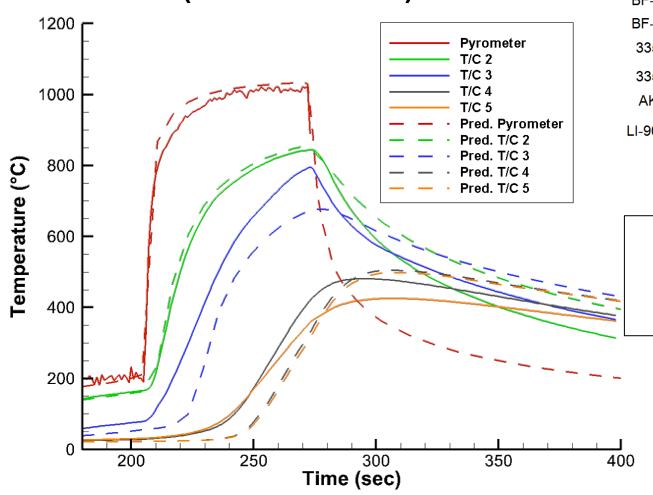
STRUCTURAL AND THERMAL SYSTEMS BRANCH

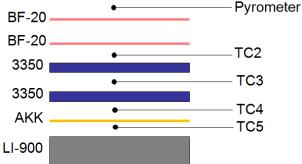
Thermal Modeling Objectives

- Develop high fidelity COMSOL thermal model for candidate material layups
- Validate COMSOL model against ground test data
- Characterize to thermophysical properties to high fidelity

Flexible TPS Thermal Model v0.0d

- Gas advection*
- Material decomposition*
- Radiative transport
- No requirement for contact conductance
- Diffusion based

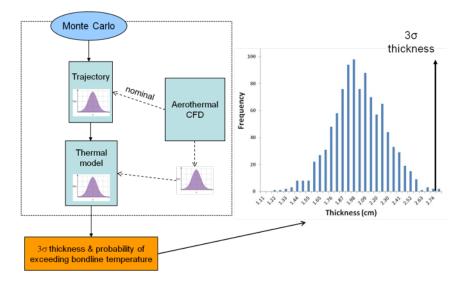

6

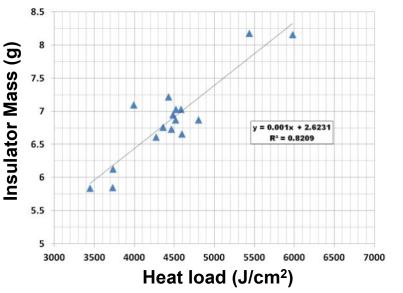

^{*} Framework in place, not yet active in model

Test vs Analysis Comparison

STRUCTURAL AND THERMAL SYSTEMS BRANCH

LCAT Results vs COMSOL V0.0d Model (20 W/cm² TPS)

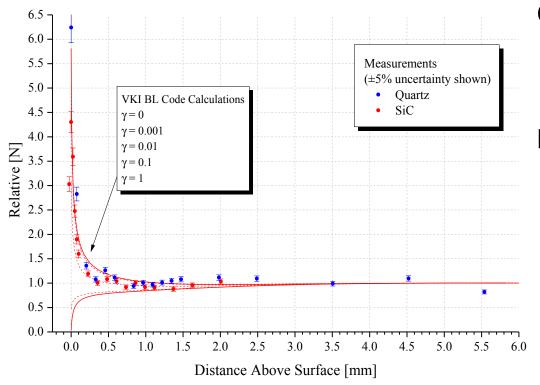

Spatial Distribution of Temperatures at Discrete Times

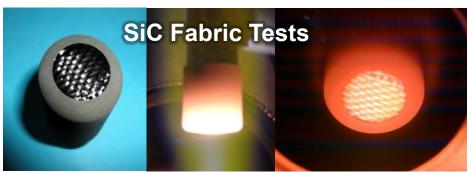

Thermal Margins Policy

STRUCTURAL AND THERMAL SYSTEMS BRANCH

Margins Policy Objectives

- Establish a rational design margins policy for FTPS that directly addresses modeling and material response uncertainty using a Monte Carlo simulation capability
- Link FTPS sizing operation to trajectory dispersion and aerothermal Monte Carlo analysis routines
- Predict time-resolved bondline temperature distributions that can be used to establish performance reliability intervals





Surface Catalysis

(Monolithic SiC Plugs & Fabrics)

STRUCTURAL AND THERMAL SYSTEMS BRANCH

Catalysis Objective

 Characterize monolithic plug materials versus fabrics in N₂, O₂, and NO environments

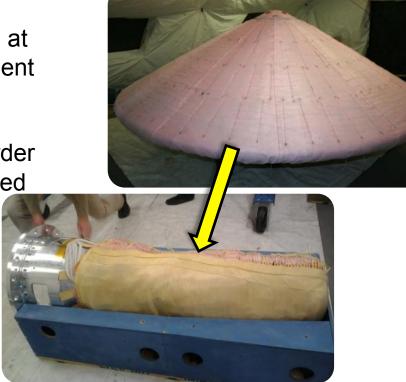
Results

- Relative N atom concentration measurements for quartz and monolithic SiC (α)
- Increasing concentration toward wall indicates low surface reaction rate
- SiC (α) is slightly more catalytic than quartz for Tw = 1460 K

Material Lifecycle Testing

STRUCTURAL AND THERMAL SYSTEMS BRANCH

Deployed 3-m FTPS


 Evaluate general and local degradation of FTPS as a function of packing, storage on orbit, and deployment

Lifecycle Objectives

- Develop techniques to characterize effects of pack, long duration stowage at pressure and temperature, & deployment
- Identify FTPS tolerance limits for key environments
- Establish predictive relationships in order to estimate system performance of aged FTPS

Areas of interest

- General acreage
- Seams / joints
- Manufacturing anomalies

Packed 3-m FTPS

Polyimide Aerogel Development

Langley Research Center

STRUCTURAL AND THERMAL SYSTEMS BRANCH

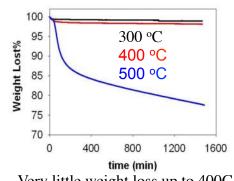
Why develop polyimide aerogels?

Baseline material (commercial aerogel composite) particulates in use

Polyimide Development Objectives

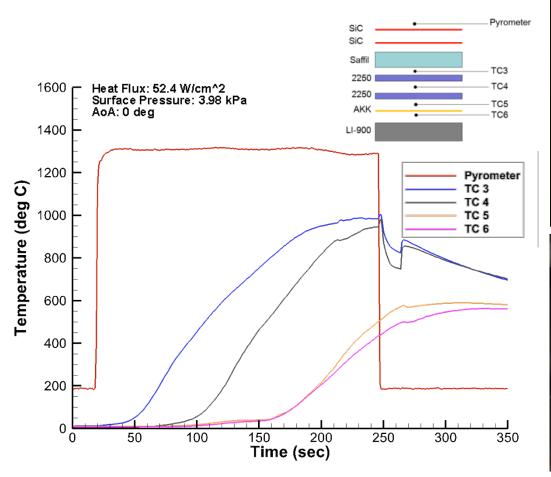
 Develop flexible, foldable insulation for inflatable decelerators

Solution


- Cross-linked PI aerogels have similar low thermal conductivity
- Fabricated as flexible, thin films
- 2-5 times stronger than polymer reinforced silica aerogels at comparable density, higher temperature stability
- Collaboration with University of Akron for scale up

3-foot long film made at University of Akron

Flexible polymer aerogel film



Very little weight loss up to 400C

Advanced TPS Development

STRUCTURAL AND THERMAL SYSTEMS BRANCH

•50 W/cm² TPS Test of SiC Fabric

Conclusions

STRUCTURAL AND THERMAL SYSTEMS BRANCH

- Stagnation and shear testing techniques have been developed for the LCAT facility to support code development and FTPS development.
- Thermal modeling of physics-based processes have been coded in COMSOL and validated against ground test data for IRVE-3 TPS.
- Design margin policy for FTPS that incorporates load and material response uncertainty has been established using Monte Carlo simulation techniques.
- Material catalysis measurements of outer fabric materials for N₂ reactions have been completed.
- TPS Lifecycle techniques have been established to age materials to evaluate material degradation when packed and stowed for long durations.
- Advanced TPS development efforts have identified an optimized aerogel insulator which is flexible, strong, and can withstand temperatures up to 400-500°C.

Acknowledgements

The authors would like to thank...

- Ground Testing
 - Carrie Rhoades, Nathan
 Mesick, Steven Tobin, Dave
 Covington, Paul Siemers, Matt
 Kardell, John Simms, Greg
 Bass, Bruce Bond, David
 Mclain, Johnny Mau
- Thermal Modeling
 - Roy Sullivan, Eric Baker,
 Kamran Daryabeigi, Mark Roth,
 Jeff Knutsen
- Margins Policy
 - Aaron Olds, Karl Edquist

- Catalysis
 - Walt Owens, Andrew Lutz,
 Silas Smith, Jason Meyers
- Lifecycle Testing
 - John Koenig, Jacques
 Cuneo, Mairead
 Stackpoole, Jody Ware
- Advanced TPS
 - Heidi Guo, Bauchau
 Nguyen, Stephanie Vivod,
 Fran Hurwitz