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Introduction 

•  Design of Thermal Protection System (TPS) is critical to 
successful planetary atmospheric entry. 

•  Design of a TPS depends on several analysis stages 
having inherent and unavoidable uncertainty 
–  Prediction of aerothermal environment 
–  Prediction of material thermal properties 

–  Prediction of material response to environment. 
•  Uncertainty conventionally handled with stacked, 

conservative margins that are often overly conservative. 
•  Conservative margin policies lead to increased TPS mass. 
•  Improved modeling and increased understanding with 

rational uncertainty treatment can result in TPS mass 
fraction reduction. 
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Thermal Margin Policy Objectives 

•  Investigate and reliably model the thermal 
management mechanisms for f-TPS using 
physics based formulations. 

•  Establish a margins policy for f-TPS that treats 
model and response uncertainty using a Monte 
Carlo methods.  

•  Couple f-TPS sizing to trajectory dispersion 
analysis. 

•  Predict temperature profile distributions that can 
be used to establish reliability intervals. 
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HIAD f-TPS Development 

Class & Size Capability TPS Performance 

1st Generation  30 Watts/cm2, 5000 
Joules/cm2 class 

1350°C  Aluminosilicate refractory cloth 
and Pyrogel insulator layer at 5kg/m2  
areal weight 

2nd Generation   50 Watt/cm2, 7500 
Joules/cm2 class 

1650°C  Silicon carbide cloth and 
insulator layers at 4kg/m2 areal weight 

Arc-jet Testing 

Gen 1 TPS 

Refractory Cloth 
Insulator 
Impermeable Film 

Heat Rate 
Heat Load 
Gas Barrier 

Modular design using functional layers  
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Flexible Heat Shield Concept 

•  Material selected based on temperature, 
stowage, and handling capability. 

•  Capability to manufacture large-scale, 
>6 m, f-TPS. 

•  Utilize commercial manufacturing base 
with acceptable quality control.  

Integrated 3-m f-TPS 

3-m IRVE-3 f-TPS 

Packed 3-m f-TPS 
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Soft-good Materials 

•  Allow aeroshell to be packed to 
relatively high density (400 kg/m3) 

•  Allow tight folds and creases without 
damage to thermal protection system 

•  Allow for accurate and reliably 
prediction  of thermal response. 

•  Deploy after stowage without 
significant detriment to thermal 
response. 

Thermal Protection Layer 

Materials: 
Aluminosilicate and silicon carbide cloth, fibrous 

insulators, aerogels, opacifiers, thin film 
polyimides     
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+3σ 

f-TPS  Margins Policy Approach 

Monte Carlo 
Thermal 

Sizing model 
input 

Trajectory 
output 

Aero-thermal 
output 

Predict	  fixed-‐,me	  
temperature	  distribu,ons 

f-TPS Key Property Distribution 
Normal Gamma Lognormal 

Predict	  fixed-‐temperature	  
,me	  distribu,ons 

f-TPS sizing pipelined within trajectory and aerothermal dispersion analysis  

HEART Trajectory (Aaron Olds) 
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Spatial 
Distribution of 
Temperatures 

at Discrete 
Times 

f-TPS Thermal Model 
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Thermal model requires the simultaneous, time-accurate 
solution of three coupled differential equations: 

Pyrolysis Gas Mass 
Continuity 

Radiation Transport 
Equation 

Energy Conservation 
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Capacitance Conduction  Advection Pyrolysis Radiation 

High fidelity thermal model of flexible f-TPS 
materials under development using COMSOL 
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Thermal Model Response 

Arc-jet Shear Testing 
Model Shear Predictions (IRVE-3) Temp. (°C) vs. time (s) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Post-test Sample 

•  Thermal model validation and verification 
through ground based arc-jet tests 

•  Shear coupons 
•  Stagnation coupons 

TC 1 
TC 2 
TC 3 
TC 4 
TC 5 

Instrumentation 
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Thermal Model Validation Study 

i1 
i2 
i3 
i4 

Cloth layers 

Insulation 
layers 

Gas barrier 
layer 

30 W/cm2 

Sample 1 

30 W/cm2 

Sample 12 

• • • • 

50 mm Stagnation Test 

i1 
i2 
i3 
i4 

•  Total test sample size of 50. 
•  Insulation layer weight independent random variable. 
•  Assembled 2 light- and 2 heavy-weight samples to 

investigate distribution tails. 
•  12 nominally identical samples selected at random from 

remaining pool of 46 samples. 
•  Exposure time to a backside temperature of 300°C 

defined as dependent random variable.   

Back-side 
Temperature 
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Thickness and Density Distributions 

Distributions derived from measurements on 16 specimens (48 layers) 

Density 

-3 +3
 -3 +3 

Thickness 
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Specimens Weight vs. Thickness 

Apparent correlation between thickness and areal weight 

64 Layers from 12 Random, 2 Light and 2 Heavy Specimens 

73.5 mm nominal diameter 
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Thermal Model Validation Results 
Back-side temperature-time profile (all samples) 
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Scatter 

•  Back-side temperature shows strong correlation with weight. 
•  Lightweight → shortest time and heavyweight  → longest 

time 
•   Nominally identical samples weighted toward lightweight result. 

142 seconds average time to a back-side temperature of 300°C 
76-second -3 time to a back-side temperature of 300°C 

109 sec 198 sec 
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Randomly Generated Layer Thickness 
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Gas Barrier Time to 300°C 

Key Difference 
• Analysis used previous 

insulator properties 
• Current insulator similar 

chemistry/structure but 
must be characterized. 

 
Model Physics 

• Sample compression effect 
• Gas advection 
• Pyrolysis/decomposition. 
• Permeability/Diffusivity 

changes 

36 sec 

250 virtual samples analyzed 
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Conclusions 

•  A margin policy assembled for f-TPS that addresses 
response uncertainty using Monte Carlo techniques. 

•  f-TPS thermal response model has been coded within 
COMSOL using a physics-based formulations. 

•  Thermal model shows good correlation with Gen-1 f-TPS 
response under shear aerothermal loading. 

•  Gen-1 f-TPS validation data set will be examined to improve 
understanding and modeling capability. 

•  Additional material measurements are required to improve 
the fidelity: 

•  Acquire properties for new insulator 
•  Permeability/diffusivity 
•  Pyrolysis/decomposition 
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Thermal Model Sensitivity 

•  Each parameter varied independently of the other two 
•  One case where all three were set to generate the highest thermal profile 
•  Variation of  25%  completely arbitrary (material characterization on-

going) 

Back-face Temperature 

TC 1 
TC 2 
TC 3 
Gas 
Barrier 

 25% Outer Fabric Emissivity 
 25% Insulator Conductivity 
 25% Insulator Specific Heat 
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Insulation Layer Measured Properties 

Nominal Acreage Diameter:  2.5 in 
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Insulator Weight Dependence 

Heat load (J/cm2) Time to 300°C 
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Heat load and time to 300°C show good 
dependence on total insulator weight  


