

Flexible Thermal Protection System Design and Margin Policy

Anthony M. Calomino¹, John A. Dec¹, and Joseph A. Del Corso¹ Roy M. Sullivan², Eric H. Baker² and Peter J. Bonacuse²

 ⁽¹⁾NASA Langley Research Center, MS 431 Hampton VA 23681, USA <u>Anthony.M.Calomino@nasa.gov, John.A.Dec@nasa.gov, Joseph.A.Delcorso@nasa.gov</u>
⁽²⁾NASA Glenn Research Center, MS 49-3, Cleveland OH 44135, USA <u>Roy.M.Sullivan@nasa.gov, Eric.H.Baker@nasa.gov, Peter.J.Bonacuse@nasa.gov</u>

9th International Planetary Probe Workshop

Toulouse, France June 2012

Introduction

- Design of Thermal Protection System (TPS) is critical to successful planetary atmospheric entry.
- Design of a TPS depends on several analysis stages having inherent and unavoidable uncertainty
 - Prediction of aerothermal environment
 - Prediction of material thermal properties
 - Prediction of material response to environment.
- Uncertainty conventionally handled with stacked, conservative margins that are often overly conservative.
- Conservative margin policies lead to increased TPS mass.
- Improved modeling and increased understanding with rational uncertainty treatment can result in TPS mass fraction reduction.

Thermal Margin Policy Objectives

NASA

- Investigate and reliably model the thermal management mechanisms for f-TPS using physics based formulations.
- Establish a margins policy for f-TPS that treats model and response uncertainty using a Monte Carlo methods.
- Couple f-TPS sizing to trajectory dispersion analysis.
- Predict temperature profile distributions that can be used to establish reliability intervals.

HIAD f-TPS Development

Heat RateRefractory ClothHeat LoadInsulatorGas BarrierImpermeable Film

Modular design using functional layers

Arc-jet Testing

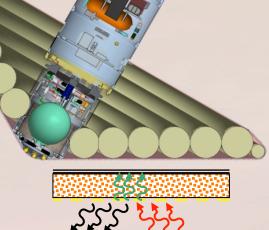
Class & Size	Capability	TPS Performance					
1st Generation	30 Watts/cm2, 5000 Joules/cm2 class	1350°C Aluminosilicate refractory cloth and Pyrogel insulator layer at 5kg/m ² areal weight					
2nd Generation	50 Watt/cm², 7500 Joules/cm² class	1650°C Silicon carbide cloth and insulator layers at 4kg/m ² areal weight					

Flexible Heat Shield Concept

- Material selected based on temperature, stowage, and handling capability.
- Capability to manufacture large-scale, >6 m, f-TPS.
- Utilize commercial manufacturing base with acceptable quality control.

3-m IRVE-3 f-TPS

Packed 3-m f-TPS

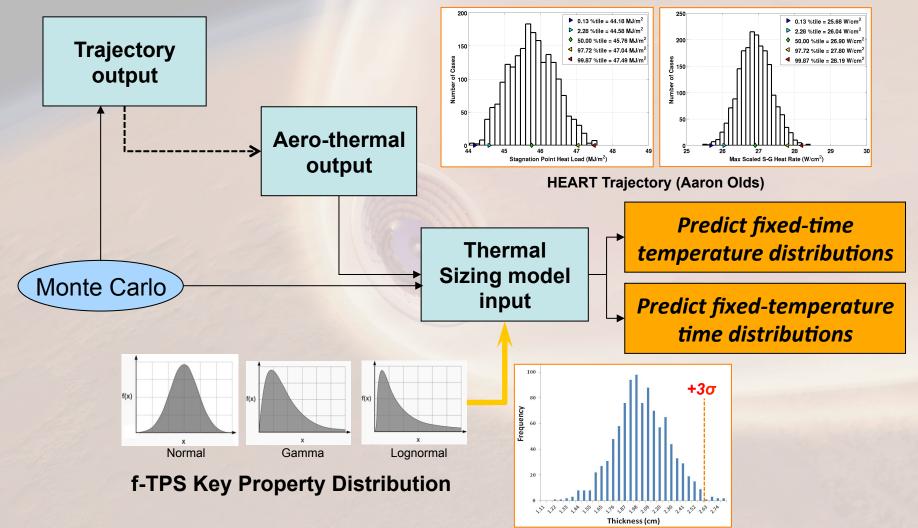


Integrated 3-m f-TPS

Soft-good Materials

NASA

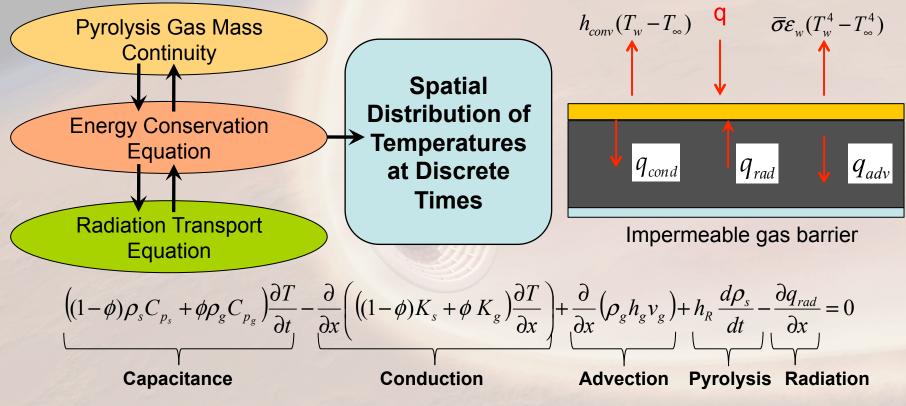
- Allow aeroshell to be packed to relatively high density (400 kg/m³)
- Allow tight folds and creases without damage to thermal protection system
- Allow for accurate and reliably prediction of thermal response.
- Deploy after stowage without significant detriment to thermal response.



Thermal Protection Layer

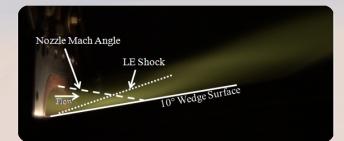
Materials: Aluminosilicate and silicon carbide cloth, fibrous insulators, aerogels, opacifiers, thin film polyimides

f-TPS Margins Policy Approach

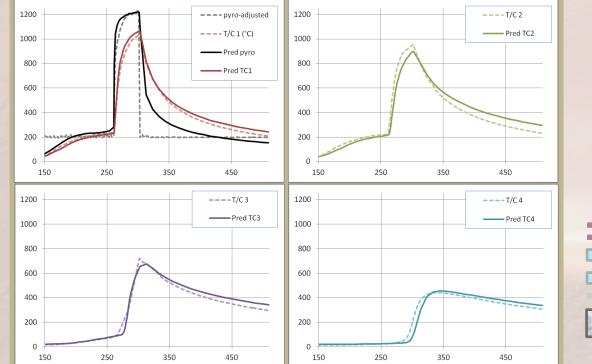

f-TPS sizing pipelined within trajectory and aerothermal dispersion analysis

f-TPS Thermal Model

High fidelity thermal model of flexible f-TPS materials under development using COMSOL

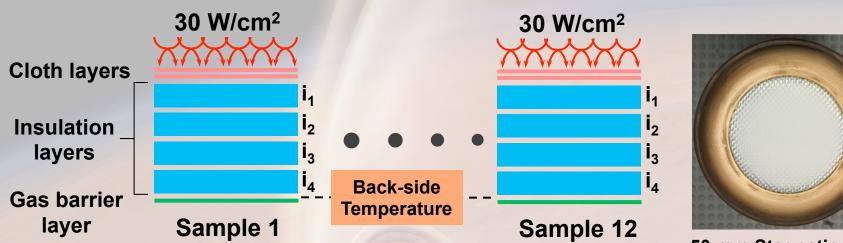


Thermal model requires the simultaneous, time-accurate solution of three coupled differential equations:


Thermal Model Response

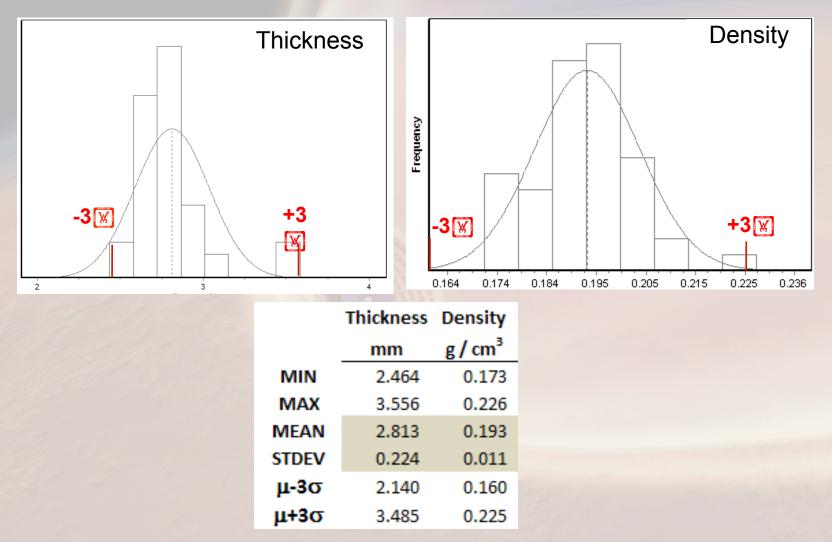
- Thermal model validation and verification through ground based arc-jet tests
 - Shear coupons
 - Stagnation coupons

Arc-jet Shear Testing


Post-test Sample

Instrumentation

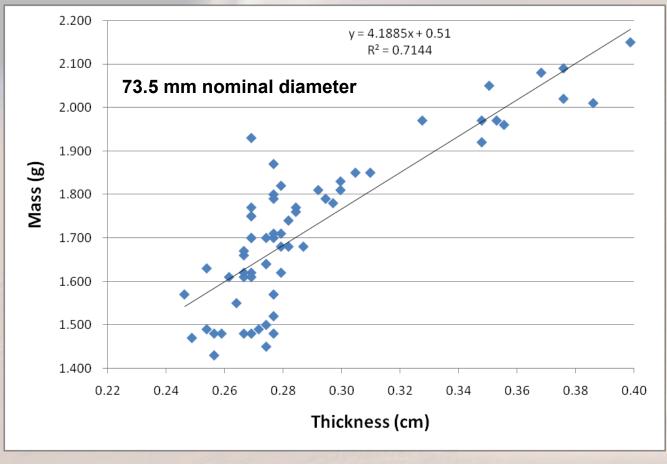
Model Shear Predictions (IRVE-3) *Temp. (°C) vs. time (s)*


Thermal Model Validation Study

50 mm Stagnation Test

- Total test sample size of 50.
- Insulation layer weight independent random variable.
- Assembled 2 light- and 2 heavy-weight samples to investigate distribution tails.
- 12 nominally identical samples selected at random from remaining pool of 46 samples.
- Exposure time to a backside temperature of 300°C defined as dependent random variable.

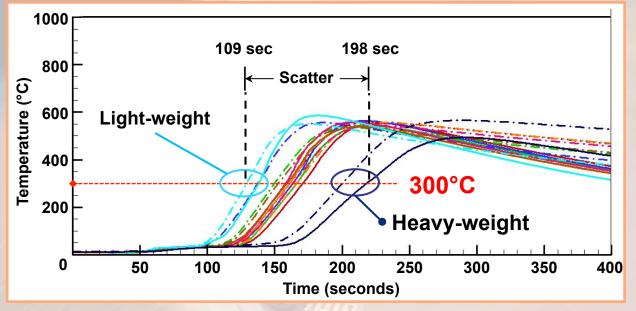
Thickness and Density Distributions


Distributions derived from measurements on 16 specimens (48 layers)

NASA

Specimens Weight vs. Thickness

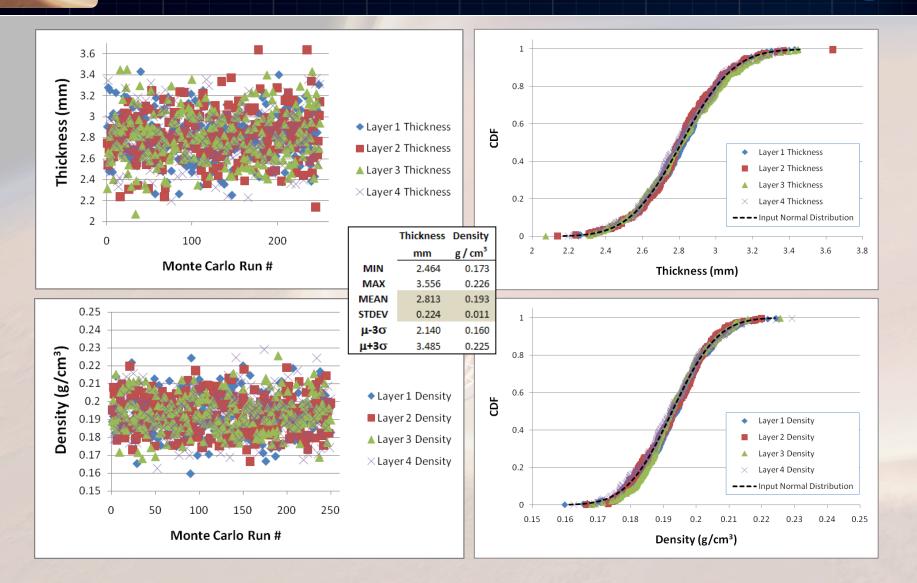
64 Layers from 12 Random, 2 Light and 2 Heavy Specimens



Apparent correlation between thickness and areal weight

Thermal Model Validation Results

Back-side temperature-time profile (all samples)

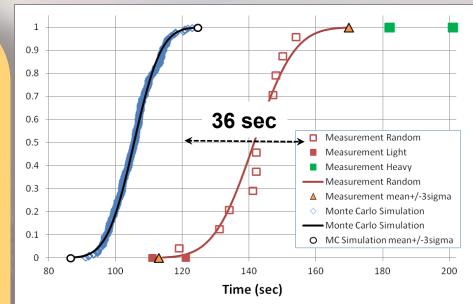


142 seconds average time to a back-side temperature of 300°C 76-second -3 ime to a back-side temperature of 300°C

- Back-side temperature shows strong correlation with weight.
 - Lightweight → shortest time and heavyweight → longest time
- Nominally identical samples weighted toward lightweight result.

Randomly Generated Layer Thickness

Gas Barrier Time to 300°C



Key Difference

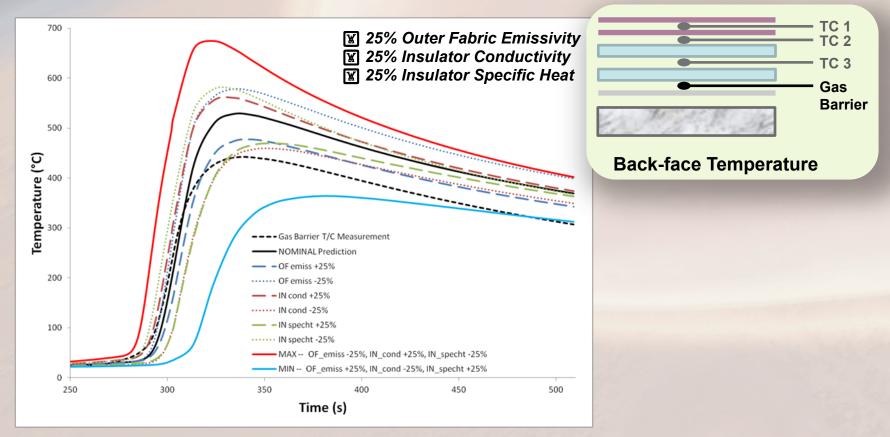
- Analysis used previous insulator properties
- Current insulator similar chemistry/structure but must be characterized.

Model Physics

- Sample compression effect
- Gas advection
- Pyrolysis/decomposition.
- Permeability/Diffusivity changes

				Relative
	Measurement	Prediction	Difference	Difference
COUNT	12	250		
MIN	119.00	91.02	-27.98	-23.5%
MAX	154.00	123.02	-30.98	-20.1%
MEAN	141.42	105.54	-35.88	-25.4%
STDEV	9.50	6.36	-3.14	-33.1%
μ-3σ	112.91	86.47	-26.45	-23.4%
μ+3σ	169.92	124.61	-45.31	-26.7%
Thin	116.00	97.80	-18.20	-15.7%
Thick	191.50	152.71	-38.79	-20.3%

250 virtual samples analyzed



- A margin policy assembled for f-TPS that addresses response uncertainty using Monte Carlo techniques.
- f-TPS thermal response model has been coded within COMSOL using a physics-based formulations.
- Thermal model shows good correlation with Gen-1 f-TPS response under shear aerothermal loading.
- Gen-1 f-TPS validation data set will be examined to improve understanding and modeling capability.
- Additional material measurements are required to improve the fidelity:
 - Acquire properties for new insulator
 - Permeability/diffusivity
 - Pyrolysis/decomposition

Thermal Model Sensitivity

- Each parameter varied independently of the other two
- One case where all three were set to generate the highest thermal profile
- Variation of 25% completely arbitrary (material characterization ongoing)

Insulation Layer Measured Properties

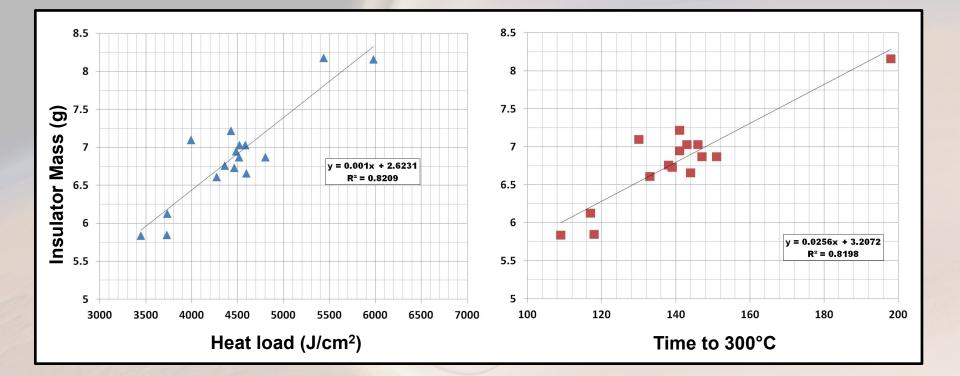
		r
Ą	Z A	

	LCAT Run	LCAT Sample	Pre-Test Thickness (mm)			Pre-Test Mass (g)			Pre-Test Density (g/cm ³)					
	Number	Name	Layer 1	Layer 2	Layer 3	Layer 4	Layer 1	Layer 2	Layer 3	Layer 4	Layer 1	Layer 2	Layer 3	Layer 4
	2337	STAG-8C	2.769	2.743	2.794	2.845	1.87	1.64	1.82	1.77	0.213	0.189	0.206	0.196
	2337	STAG-8G	2.692	2.692	3.099	2.769	1.70	1.61	1.85	1.79	0.199	0.189	0.189	0.204
	2338	STAG-9C	2.464	2.692	3.048	2.769	1.57	1.75	1.85	1.70	0.201	0.205	0.192	0.194
	2338	STAG-9G	2.997	2.819	2.769	2.616	1.83	1.68	1.80	1.61	0.193	0.188	0.205	0.194
	2339	STAG-10C	2.794	2.667	2.946	2.794	1.71	1.62	1.79	1.62	0.193	0.192	0.192	0.183
RANDOM	2339	STAG-10G	2.743	2.718	2.540	2.845	1.50	1.49	1.49	1.76	0.173	0.173	0.185	0.195
KANDOW	2340	STAG-11C	3.480	2.692	2.692	2.667	1.92	1.93	1.70	1.67	0.174	0.226	0.199	0.198
	2340	STAG-11G	2.921	2.769	3.556	2.819	1.81	1.52	1.96	1.74	0.196	0.173	0.174	0.195
	2341	STAG-12C	2.997	2.692	2.642	2.540	1.81	1.77	1.55	1.63	0.191	0.208	0.185	0.203
	2341	STAG-12G	2.692	3.531	2.667	2.972	1.62	1.97	1.66	1.78	0.190	0.176	0.197	0.189
	2342	STAG-13C	2.870	2.743	2.743	2.769	1.68	1.70	1.64	1.71	0.185	0.196	0.189	0.195
	2342	STAG-13G	2.769	2.692	2.794	2.667	1.57	1.75	1.68	1.61	0.179	0.205	0.190	0.191
	2343	STAG-14C	2.565	2.489	2.667	2.769	1.48	1.47	1.48	1.48	0.182	0.186	0.175	0.169
LIGHT	2343	STAG-14G	2.692	2.565	2.591	2.743	1.48	1.43	1.48	1.45	0.174	0.176	0.180	0.167
	2344	STAG-15C	3.759	3.759	3.277	3.683	2.09	2.02	1.97	2.08	0.176	0.170	0.190	0.178
HEAVY	2344	STAG-15G	3.480	3.988	3.861	3.505	1.97	2.15	2.01	2.05	0.179	0.170	0.164	0.185
				Mean	StDev			Mean	StDev			Mean	StDev	
	RANDOM			2.813	0.224	R/	NDOM	1.713	0.121	R/	NDOM	0.193	0.011	
LIGHT			LIGHT	2.635	0.098		LIGHT	1.469	0.019		LIGHT	0.176	0.007	

Nominal Acreage Diameter: 2.5 in

HEAVY 2.043

0.063


HEAVY 3.664 0.230

HEAVY 0.176

0.008

Insulator Weight Dependence

Heat load and time to 300°C show good dependence on total insulator weight