I nvestigating

C omposition

E nceladus

via

P rimary

L ander

U nderwater

M icroorganism

E xplorer

Alex Gonring, Capri Pearson, Sam Robinson, Jake Rohrig, & Tyler Van Fossen

University of Wisconsin - Madison

ICEPLUME Mission Overview Aeroshell

Solar Electric Propulsion (SEP) Module

Lander with Probe Inside

Orbiter

Launch

SEP Separation from Aeroshell

Titan Aero-Gravity Assist and Aeroshell Ejection Lander
Deployment to
Enceladus'
Surface

Probe
Deployment
from Lander

Saturn's moon Enceladus shows unique characteristics.

- Recent geological activity
- Warm South Pole
- Plume contributes to E-Ring
- "Tiger Stripes" supply fresh ice
- Fundamental needs for life
 - Water (Cassini measured 90%)
 - C H N O basic elements
 - Energy source
- Astrobiology may exist on Enceladus

500 km

Solar Electric Propulsion and Gravity Assists will provide the initial ΔV to Saturn.

The Ultraflex solar panels provide power and xenon fuels the ion thrusters. Advanced Stirling Radioisotope Generators operate the instruments on the orbiter.

An aeroshell is required for atmospheric entry during aero-gravity assist.

- Solar Electric Propulsion with aerocapture provides ~ 2.4x more mass delivered to final destination (~ 500 kg)
- Added complexities:
 - 1) RCS thrusters for trajectory alignment
- 2) Heat shield for thermal protection (~1500° C, 99% KE)

3) Payload configuration within volumetric constraint

MSL (Ø 4.5m)

Orion heat shield (Ø 5m)

ICEPLUME (Ø 5.0 m)

Low-density materials are required to minimize aeroshell mass.

Structural Material: graphite polycyanate composite

- Aeroshell: 2.6 cm molded honeycomb
- Framework: 1.6 cm isogrid
- Face Sheets: 2 mm thick sheet

<u>Thermal Protection Materials:</u> ** 14-31% improvement on heritage aerial densities

- PhenCarb-20 (500 W/cm²)
- o SRAM-14
- (150 W/cm^2)

- \circ SRAM-20 (260 W/cm²)
- Acusil II
- (100 W/cm²)

- SRAM-17
- (210 W/cm^2)

Ten separation mechanisms split the aeroshell and deploy the orbiter after aero-assist.

** Based on the Mars Science Laboratory (MSL) design

Multiple propulsion systems are needed to accomplish our mission.

- System uses separate monopropellant and bipropellant propulsion modules
- Monopropellant module will use 132 kg of hydrazine (N₂H₄) and 0.9 N thrusters for attitude control in conjunction with reaction wheels
- Bipropellant module will use 3000 kg of monomethylhydrazine (MMH) for fuel and nitrogen tetroxide (NTO) for oxidizer

The monopropellant 0 0.128 m system is used for Helium Recharge Lank altitude Control and Used for a simple courset system Holds 0.4 Corrections.

Monopropellant Tank

- Purchased from Pressure
 Systems Inc.
- Initial pressure 2.34 MPa
 270 m(340 psi)
 - Holds 132 kg of Hydrazine

ie

<u>Thruster Clusters</u>

- 1 N thrusters purchased from Astrium
- 8 clusters of 4 thrusters are placed on the top and bottom of the payload deck

Science instruments similar to the Cassini mission will explore mission goals.

Instrument	Mass Allowance (kg)	Power Allowance (W)	Similar to
High resolution camera	60	60	Cassini
UV-IR imaging spectrometer	18	12	Cassini
Gas chromatograph mass spectrometer	10	28	Cassini
Radar or laser altimeter	42	109	Cassini

The orbiter contains multiple communication systems.

- Radio frequency subsystem with antennas provide communication for the orbiter to and from Earth.
 - High-gain Antenna (HGA)
 - Support communication with Earth while in orbit about Enceladus
 - S-band Probe/Lander communication
 - Two Low-gain Antennas (LGA)
 - Support communication with Earth during transit

The orbiter's structure is constructed primarily of a composite payload deck.

<u>Payload Deck Structural Material</u>: graphite polycyanate composite

- Deck Panels: 2 cm isogrid
- Face Sheets: 1.6 mm thick sheet

HGA Structural Material:

- 6061-T6 aluminum I beams
- 6061-T6 angle brackets
- 7075-T73 aluminum sheet

A majority of the total mass will be allotted towards payload delivery.

The lander will be deployed from the back of the orbiter.

- No aeroshell required
- Heat flux value of

(compared with)

3.6m

- 4X 22N descent thrusters
- 16X 1N attitude thruster clusters

Radar

- Lander held to orbiter with pyronuts
- Deployed by expanding spring
- Guided out on rails

The main objective of the lander is to carry the probe to the surface.

Thank you! Questions??

IPPW-9 Staff & Student Organizing Committee

University of Wisconsin Faculty and Staff

Dr. Elder Prof. Hershkowitz

Dr. Sandrik

