

Aerodynamic design of a rotary-wing micro air vehicle for flying on Mars

MAV Research Center Garden Workshop 1-2 July 2015

H. Bézard ONERA Toulouse / DMAE J.-M. Moschetta ISAE-SUPAERO / DAEP

retour sur innovation

Overview

Introduction

- General trends for flying on Mars
- Airfoil design and evaluation
- Rotor design and configurations
- Conclusions and perspectives

Introduction

- Mars exploration with rovers
 - No real time control: signal Mars \leftrightarrow Earth: 3 to 21 min.
 - Human input to analyze immediate surroundings and identifying promising targets and trajectories \rightarrow low speed, short distances
 - Low accessibility: flat ground, no rocks \rightarrow only plains

Opportunity \rightarrow 40 km from 2004 to 2014

Curiosity \rightarrow 10 km from 2012 to 2015

Introduction

Interest of a micro-UAV associated to a rover

Explore the surroundings to elaborate future routes

Explore inaccessible areas (cliffs, canyons, large rocks)

Pick-up soil samples and get back to rover for analysis

Mars atmosphere

Comparison Earth-Mars

	Earth Ground level	Mars Ground level	Earth Altitude 31.5 km
Gravity (m/s ²)	9.81	3.72	9.71
Density (kg/m ³)	1.225	0.014	0.014
Dynamic viscosity (Pa.s)	1.8 10 ⁻⁵	1.04 10 ⁻⁵	1.4 10 ⁻⁵
Mean temperature (K)	288	213	216
Specific heat ratio γ	1.4	1.29	1.4
Sound velocity (m/s)	340	238	295

• Other features

- Atmospheric turbulence
- Strong winds and dust storms
- High pressure and temperature variation (day/night, mountains/plains)

General trends

- Use of blade element theory
 - Airfoil characteristics representative of ultra-low Re + effect of compressibility up to supersonic
 - Pitch angle adjusted for constant mean lift coefficient $C_L = 0.5$

Effect of diameter and rotational speed on lifted mass and tip Mach number

General trends

• Use of blade element theory

Figure of Merit =
$$\frac{\text{ideal } C_P}{\text{real } C_P}$$
 with ideal $C_P = \sqrt{\frac{C_T}{2}}$

Airfoil design

- Parametric analysis with 2D aerodynamic code (XFOIL)
 - Design conditions: 4 blades, Ø = 30 cm, constant thickness t/c = 1%, lifted mass = 100 g, Re_c = 3000, M = 0.1
 - Analytical camber line with 2 parameters x_C, y_C

• Optimum in terms of lift-to-drag ratio C_L/C_D and power efficiency $C_L^{3/2}/C_D$

- Evaluation of optimal airfoil
 - Laminar Navier-Stokes calculations (*elsA* ONERA) M=0.5, Re=3000
 - Comparison with classical NACA 44 airfoils of 12% and 2% thickness

- Evaluation of optimal airfoil
 - Comparison of Mach field at M = 0.5, Re = 3000, same $\alpha = 5^{\circ}$

- Aerodynamic characteristics of optimal airfoil
 - Navier-Stokes computations for different M, Re and α conditions

Occurrence of unsteadiness when Re increases (M = 0.5, $\alpha = 5^{\circ}$)

• Aerodynamic characteristics of optimal airfoil

Rotor design

- Optimal design based on optimal airfoil
 - Geometry obtained by minimum induced loss analysis (QMIL)
 - Performance obtained by blade element code (QPROP)

Rotor definition example: $\emptyset = 30$ cm, $\Omega = 9000$ rpm, m = 100 g, $C_L = 0.7$

Rotor performance

- Performance of optimal rotors
 - Design parameters: \emptyset = 30 cm, Ω = 9000 rpm, m = 100 g, C_L = 0.7
 - Evolution with rotational speed (or tip Mach number)

Rotor performance

- Realistic geometry: modification close to the hub
 - Example: 4-blade rotor, $\emptyset = 30$ cm

Rotor configurations

• Increase payload: coaxial bi-rotors vs. planar multi-rotors

Coaxial bi-rotors: + larger disk area - interaction penalty Multi-rotors: + better control - lower disk area

 \emptyset = 30 cm \rightarrow 4 rotors of d = 12 cm

Rotor configurations

- Comparison of performance
 - Application for \emptyset = 30 cm, total mass = 200 g, mean C_L = 0.7

	Coaxial bi-rotor	Co-planar 4-rotors	
Lifted mass	200 g	200 g	
Lifted mass per rotor	Upper: 114 g Lower: 86 g	50 g	
Total power	22.8 W	32.6 W —	→ + ·
Rotational speed	9435 rpm	22760 rpm	
Single rotor diameter	30 cm	12 cm	
Tip Mach number	0.6	0.6	

Mass budget

- Application for a coaxial bi-rotor UAV
 - Mass = 200 g, 4 blades per rotor, \emptyset = 30 cm, flight duration \approx 30 min.

Conclusions

- Airfoil adapted to low Re and high Mach: low thickness and high rear camber
- Rotor design adapted to high rpm: not in favor of 2-blade rotor (large chords)
- Coaxial bi-rotor more efficient than planar multi-rotors
- Designing an helicopter on Mars is challenging but feasible

Perspectives

- Further investigations on airfoil: unsteadiness of laminar separated flow, surface roughness, Navier-Stokes optimization
- Further investigations on rotors: 3D Navier-Stokes computations, upper-lower rotor interaction
- Dynamic response to atmospheric turbulence
- Experiments in low pressure chamber (needs adaptation of existing facility)

Thank you for your attention

Acknowledgements: L. Kremer (ENSEEIHT) L. Yu (Polytechnique)

