Data Mining and Machine Learning for Classification and Clustering of NIRS signals

Gérard Dray
gerard.dray@mines-ales.fr
Collaboration

Biomedical Engineering Research Group (BERG)

Tomas Ward

Stéphane Perrey

Gérard Derosière

Kevin Mandrick

Ecole des Mines d’Alès (EMA)
Laboratoire de Génie Informatique et d’Ingénierie de Production (LG2IP)

Maynooth

Sami Dalhoumi

Gérard Dray

Montpellier

Nîmes

Collaboration

Laboratoire Movement to Health (M2H) – UM1 - EuroMov

LABEX NUMEV

10/04/2014

Institut Mines-Télécom

2f-NIRS - ISAE / M2H - Toulouse
Aim and Outline

Interest of DM and ML for NIRS Data Analysis and BCI

What could be the contribution of Mines Alès in the French Community for functional NIRS?

- Machine Learning and Data Mining
- Brain Computer Interface (BCI)
- Main issues
- Applications
 - Graph-based transfer learning for managing brain signals variability in NIRS-based BCIs
 - Estimation of operator attentional state
Machine Learning

« Field of study that gives computers the ability to learn without being explicitly programmed »
Arthur Samuel 1959

« Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce one which simulates the child's ? If this were then subjected to an appropriate course of education one would obtain the adult brain. » Alan Turing 1963
Data Mining

« The non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns in data »
Fayyad, Shapiro et Smyth 1996
Knowledge Discovery from Data

Data sources

Consolidation

Selection

Data Mining / Machine Learning

Evaluation

Formated Data

Consolidated Data

y=ax²

Models

Data sources
Classification / Clustering

<table>
<thead>
<tr>
<th>Attributs</th>
<th>Age</th>
<th>Revenu</th>
<th>Sexe</th>
<th>Situation Matrimoniale</th>
<th>...</th>
<th>Attributs j</th>
<th>...</th>
<th>Attributs p</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^1</td>
<td>X^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Classification

- SVM
- LDA
- K-means
- Decision trees
- Neural networks
- Fuzzy Logic clustering
- Regression
- Rules
- Case based reasoning
- Bayesian networks
- ...

Clustering

Attribut 1

Attribut 2

Attribut 1

Attribut 2
General principles of BCI

Biological Signals → Electrical Analogic signals → Analogic Signal processing → Analogic to Digital Conversion → Digital Signal Processing → Numerical Data

Sensor

decision-making tools → Classification Clustering → Features Selection
NIRS based BCI

NIRS
Near-Infrared Spectroscopy

Classification
Features Selection
Digital Signal Processing

HbO2 HHb

Time

HbO2 HHb

Time
Main issues

- Variability Inter subjects and Inter sessions
- Long calibration time for BCI
- Choice of the ML / DM classification method
- Off line / On line approach
- Lack of data for benchmark
Graph-based transfer learning for managing brain signals variability in NIRS-based BCIs

- Long calibration time needed before every use in order to train a subject-specific classifier.
- One way to reduce this calibration time is to use data collected from other users or from previous recording sessions of the same user as a training set.
- However, brain signals are highly variable and using heterogeneous data to train a single classifier may dramatically deteriorate classification performance.
- Transfer learning framework in which we model brain signals variability in the feature space using a bipartite graph.
Graph-based transfer learning for managing brain signals variability in NIRS-based BCIs

- Open Data provided by Abibullaev et al., 2013
- NIRS signals recorded from seven healthy subjects using 16 measurement channels on pre-frontal cortex
- Two experiments - four sessions:
 - discern brain activation patterns related to imagery movement of right forearm from the activation patterns related to relaxed state
 - discern brain activation patterns related to imagery movement of left forearm from the activation patterns related to relaxed state.
- During each session, participants performed three trials

Graph-based transfer learning for managing brain signals variability in NIRS-based BCIs

Prototypical brain activity pattern using NIRS technology
Graph-based transfer learning for managing brain signals variability in NIRS-based BCIs

Brain signals variability in NIRS-based BCIs:
(a) Inter-sessions variability of explanatory channels for subject 5 in experiment 1.
(b) Inter-subjects variability of explanatory channels for subjects 3 and 4 in experiment 2.

White dots represent explanatory channels and black dots represent non-explanatory channels.
Graph-based transfer learning for managing brain signals variability in NIRS-based BCIs

Bipartite graph model for characterizing brain signals variability in the features space between different users
Estimation of operator attentional state

Towards a near infrared spectroscopy-based estimation of operator attentional state.
Gérard Derosière, Sami Dalhoumi, Stéphane Perrey, Gérard Dray, Tomas Ward
PLoS ONE 01/2014

7 subjects
Estimation of operator attentional state

B. NIRS signals preprocessing

C. Pattern classification (SVM)

Signals from the first 10 minutes of task (data from 6 of the 7 subjects)

Signals from the last 10 minutes of task (data from 6 of the 7 subjects)

SVM training

First 10 min

Last 10 min

Signals from the first 10 and last 10 minutes of task (data from the remaining subject)

SVM test

Calculation of % of correctly classified epochs
Estimation of operator attentional state

A. Subject [O2Hb] [HHb] [O2Hb] and [HHb]

<table>
<thead>
<tr>
<th>Subject</th>
<th>[O2Hb]</th>
<th>[HHb]</th>
<th>[O2Hb] and [HHb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44.5</td>
<td>87.8</td>
<td>88.8</td>
</tr>
<tr>
<td>2</td>
<td>73.5</td>
<td>94.2</td>
<td>89.1</td>
</tr>
<tr>
<td>3</td>
<td>49.2</td>
<td>28.4</td>
<td>32.1</td>
</tr>
<tr>
<td>4</td>
<td>95.1</td>
<td>90.4</td>
<td>90.6</td>
</tr>
<tr>
<td>5</td>
<td>98.4</td>
<td>80.6</td>
<td>76.5</td>
</tr>
<tr>
<td>6</td>
<td>82.5</td>
<td>21.2</td>
<td>68.3</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>60.8</td>
<td>96.7</td>
</tr>
</tbody>
</table>

B. Mean ± SD [O2Hb] [HHb] [O2Hb] and [HHb]

<table>
<thead>
<tr>
<th>Subject</th>
<th>[O2Hb]</th>
<th>[HHb]</th>
<th>[O2Hb] and [HHb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94.9</td>
<td>94</td>
<td>99.6</td>
</tr>
<tr>
<td>2</td>
<td>85.4</td>
<td>81.6</td>
<td>97.9</td>
</tr>
<tr>
<td>3</td>
<td>91.7</td>
<td>22.6</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>26.4</td>
<td>91.3</td>
</tr>
<tr>
<td>5</td>
<td>83.8</td>
<td>45</td>
<td>72.2</td>
</tr>
<tr>
<td>6</td>
<td>76.3</td>
<td>86.1</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>96.4</td>
<td>100</td>
<td>97.2</td>
</tr>
</tbody>
</table>

C. Mean ± SD [O2Hb] [HHb] [O2Hb] and [HHb]

<table>
<thead>
<tr>
<th>Subject</th>
<th>[O2Hb]</th>
<th>[HHb]</th>
<th>[O2Hb] and [HHb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60.8</td>
<td>100</td>
<td>91.8</td>
</tr>
<tr>
<td>2</td>
<td>85</td>
<td>96.5</td>
<td>96.3</td>
</tr>
<tr>
<td>3</td>
<td>39.8</td>
<td>6.6</td>
<td>34.2</td>
</tr>
<tr>
<td>4</td>
<td>92</td>
<td>34.5</td>
<td>96.7</td>
</tr>
<tr>
<td>5</td>
<td>94</td>
<td>61.4</td>
<td>74.7</td>
</tr>
<tr>
<td>6</td>
<td>75.5</td>
<td>70.7</td>
<td>93.9</td>
</tr>
<tr>
<td>7</td>
<td>92.2</td>
<td>93.9</td>
<td>96.8</td>
</tr>
</tbody>
</table>

Mean ± SD

<table>
<thead>
<tr>
<th>[O2Hb]</th>
<th>[HHb]</th>
<th>[O2Hb] and [HHb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>77 ± 20.2</td>
<td>66.2 ± 35.1</td>
<td>83.5 ± 23.1</td>
</tr>
</tbody>
</table>
Estimation of operator attentional state

On line
K-means custering
Estimation of operator attentional state

On line K-means clustering
Estimation of operator attentional state

On line
K-means clustering
Estimation of operator attentional state

On line K-means clustering

20 min.
Estimation of operator attentional state

On line
K-means clustering

25 min.
Estimation of operator attentional state

On line
K-means clustering

Graph showing data points with different colors representing different groups clustered by K-means algorithm.
Future work

- On line data analysis
- Fuzzy clustering
- Multi Classifier aggregation

- NIRS Open Data Repository
- NIRS Open Data Analysis Software
Data Mining and Machine Learning for Classification and Clustering of NIRS signals

Gérard Dray
gerard.dray@mines-ales.fr