9th International Planetary Probe Workshop Toulouse, France June 2012

Technology Development toward Mars Aeroflyby Sample Collection

K. Fujita*,

T. Ozawa*, K. Okudaira†, T. Mikouchi‡, T. Suzuki*, H. Takayanagi*, Y. Tsuda*, N. Ogawa*, S. Tachibana‡, and T. Satoh*

* Japan Aerospace Exploration Agency
 † University of Aizu
 ‡ University of Tokyo

Background

Mars Exploration with Landers & Orbiters Synergy (MELOS)

- Currently entertained in Japan (2020 launch)
- Conglomerate mission where orbiters, landers, rovers, and/or airplanes are used for aeronomical, meteorological, and geoscientific researches as well as life search
- To reveal why Mars is now in red the fate of ancient water and carbon dioxide on the course of Martian history

Mission scenario

- MELOS system is first inserted into primary orbit altogether
- Entry systems are flown into Martian atmosphere using orbiter as a service module
- Orbiter is maneuvered to final orbit for scientific operation
- \rightarrow Great potential for a variety of probe vehicles incorporated into MELOS

Mars Aeroflyby Sample Collection (MASC)

Mission concept

• Collection of Martian dust & gas samples during aeroflyby and return to Earth

25 km (av)

• Originally proposed by Leshin et al. as a candidate for Mars Scout mission

Scenario

Dust fluence for V = 4 km/s (count/cm².sec) MOI o Altitude (km) Diam. = $0.5 - 1.5 \,\mu m$ 1.5–2.5 μm 2.5–3.5 μm 1–10 µm 45 0.05 0.04 0.02 0.23 40 3 1.4 16 4 nal orbit 35 56 48 23 252 Ad 30 367 312 148 1650 rs may V 25 1331 1129 536 5984 em) b 20 3526 2991 1420 15849 е Parking Sample retu analysis oved instruments Sample retu Return to Earth

Fundamental Design Parameters for MASC

Critical keys

- Successful insertion to an orbit appropriate for earth return : precise GNC using lifting aeroshell is needed to cope with uncertainties in atmospheric density, aerodynamics of vehicle, & orbit/attitude determination
- Minimization of total ΔV required for AOT, post-AOT maneuver, and earth return
- Accessible lowest altitude < 40 km for sample collection
- Minimization of TPS for aerodynamic heating

ЬX

Fundamental Mission Design

Design criteria

- Minimize total system mass (minimum dry mass of earth return subsystem may be almost determined by heritages of past systems)
- Decrease propellant mass for earth return to minimize mass of orbiter subsystem
- Increase apoapsis altitude of parking orbit to decrease ΔV for earth return
- Decrease β for reduction of TPS mass
- Increase β to enlarge ATO corridor

Orbit design		Aeroshell			
Primary elliptic orbit (orb1)	300 × 7 R_m altitude	Structure	CFRP honeycomb with TPS		
AOT target orbit (orb2)	150 × 500 km altitude	Area density	7.5 kg/m ²		
Theoretical ΔV for orb1 $ ightarrow$ orb2	–1.10 km/s	TPS bulk density	0.25 g/cm ³		
Nominal flight path angle	-11.54 ^o	Aeroshell shape	Sphere-cone		
Allowed deviations	±0.20°	Half-cone angle	20 deg		
Expected lowest altitude	34.0±5.0 km	Base diameter, D_B	1.63 m		
Post-AOT ΔV	< 60 m/s	Nose radius, R _n	0.38 m		
Final parking orbit (orb3)	500 × 500 km altitude	Aerodynamic characteristics			
ΔV required for orb2 \rightarrow orb3 ΔV required for orb3 \rightarrow earth	+ 79 m/s + 2.60 km/s (incl. margin)	Ballistic coefficient	700 kg/m ²		
Propulsion system (OME & RCS)					
Fuel / Oxidizer	Hydrazine / MON-3	AOT guidance			
O/F ratio	0.8	Guidance algorithm	APC + lateral control		
Specific impulse	315 sec	Attitude control	PID yaw/pitch controller		
Structural factor	0.25	<i>L/D</i> control method	Bank-angle modulation		
Ballistic	coefficient ka/m ²	Control device	bipropellant RCS		

Damslic Coemclent,

Aerodynamic Design

System requirements

- L/D > 0.3 (up to 0.4 for $\alpha < 12$)
- $\beta \approx 700 \text{ kg/m}^2$
- Equipped with light-weight TPS
- Equipped with RCS's
 - Nose radius = 0.38 m
 - Half cone angle = 20^o
 - Base diameter = 1.62

JAX

TPS Design

Development of non-ablative light-weight TPS (NALT)

- Non-ablative TPS is favorable for dust sampling during hypersonic flight
- NALT consists of C/C skin, thermal insulator, and honeycomb structure

Conceptual design of MASC aeroshell

- 1D TPS analysis along a flight trajectory (search for solutions by trial-&-error method)
- Resulting in TPS area density of 9.0 kg/m² at stagnation point, 7.5 kg/m² in average, and total aeroshell mass of 133 kg

ted C/C composite ski

1D TPS analysis along flight trajectory

AXA CO

Design of GNC Subsystem

GNC subsystem configuration

- Effective descent/ascent rate control by bank-angle modulation using RCS's
- Analytic predictor-corrector (APC) controller for primary GNC architecture
- Lateral controller to minimize lateral deviation
- Proportional-integral-derivative (PID) controller for yawing/pitching stabilization

Assessment of designed GNC controller robustness

- Monte-Carlo simulation by taking into account uncertainties in atmospheric density, aerodynamics of vehicle, orbit determination, and guidance to entry I/F point
- Results have shown sufficient robustness of designed GNC controller
- Fuel used in bank-angle modulation is minimized by optimizing RCS's operation

3σ in ΔV	Apoapsis altitude (km)			Orbit inclination (deg)			Success rate	
(m/s)	minimum	average	maximum	minim	num	average	\max imum	(%)
0.3	222.6	564.9	703.9	-0.4	404	0.135	1.632	99.8
0.5	232.1	561.9	782.42	-0.5	576	0.144	1.777	99.8
0.7	200.7	557.4	897.2	-0.8	899	0.149	1.813	99.8
			3σ in L/L	D (%)	Succe	ess rate (%)	
			5.0			99.8		
			10.0)		99.8		
K-W			20.0)		98.2		

Dust Sampler Design

Approach

- Retractable samplers (currently 2) are exposed for a few seconds
- Samplers are located near aeroshell base to reduce heat transfer rate
- Silica aerogel is used for capturing sample particles (like STARDUST)
- Aerogel cells are transported to the reentry capsule inside MASC

Key issues

- 1. Damages inflicted on dust particles by high-temperature shock layer
- 2. Damages inflicted on aerogel exposed to high-temperature shock layer
- 3. Dust capturing capabilities of aerogel
- 4. damages inflicted on dust particles by impingement
- 5. capabilities of detecting & extracting dust samples stuck in the aerogel

Dust particles

Assessment of Sample Damages

Trajectory & heat transfer analysis of sample dust particles

- Particles rush almost straightly across the shock layer and reach the aeroshell surface.
- Particle temperature remains below the critical temperature since flight time < 5 μ s.
- Temperature raise can be reduced by optimizing position of the sample collector in

JAXA C

11

Assessment of Aerogel Damages

Arcjet heating test campaign

- 1st circular : aerogel surface was vitrified to the depth of several μm & charred materials were formed on the surface by oxidation of hydrophobizing agents
- 2nd circular : an aerogel cell to shore up structural strength as well as to reduce heat transfer rate was successfully demonstrated with non-hydrophobic aerogel
- 3rd circular : non-silica aerogel specimens are tested to improve heat resistance

1st test campaign

2nd test campaign

3rd test campaign

 Carbon aerogel (CA)
 CASA: CA/SA 2-layer aero-gel for higher heat-resistance

Assessment of Dust Capturing Capabilities

LGG dust capture tests (at Space Plasma Lab., ISAS)

- Alumina/montmorillonite particles of 10-30 μm in diameter were successfully captured by aerogel cells before/after arcjet-heating
- Scan, extraction, & SEM/EDS analysis of samples has been successfully demonstrated

VdG dust capture tests (at HIT)

 Argental particles of 1 μm in diameter were successfully captured by aerogel cells both before/after arcjet-heating.

VdG dust capture tests

SEM/EDS Analysis (montmorillonite, 10 μm) Particle surface is seen to somehow contaminated by melted aerogel.

System Configuration

Conceptual system design

- Conducted based on the latest status of subsystem development, and on heritages of HAYABUSA sample return system
- Further reduction of system mass may be realized by introducing new instruments

Total mass	593		
Orbit insertion subsystem	175		
Aeroshell	133		
RCS (dry)	15		
Hydrazine (fuel)	15		
MON-3 (oxidizer)	12		
Orbiter subsystem	358		
OME propellant for departure	190		
Hydrazine (fuel)	105		
MON-3 (oxidizer)	85		
Earth return subsystem	168		
OME (dry)	48		
Hydrazine (fuel)	15		
Structure	35		
Sampler	10		
Electronics	44		
Earth reentry capsule	16		
Margin	60		

14

Development Plan (if applied to MELOS1)

Conclusion

15

Mars Aeroflyby Sample Collection (MASC) using AOT technologies is proposed as a part of MELOS mission

Feasibility study of MASC has been conducted

 The trajectory calculations have shown that a wide AOT corridor acceptable for the state-of-the-art GNC technologies in planetary explorations can be achieved by use of a lifting aeroshell with L/D > 0.3.

Preliminary R & D of the MASC subsystems are in progress

- The integrated aeroshell with the TPS is designed to have a 7.5 kg/m² area density
- Robustness of developed GNC controller has been demonstrated
- Overall examinations of dust sampling & analyzing techniques have been conducted
- The dust particles are expected to reach the collector across the shock layer without fatal damages
- Silica aerogel cell is found to capture dust samples of sub-µm in diameter, regardless of heat transfer from the high-temperature gases

MASC system is feasible with a minimum total mass of 600 kg

MASC is also applicable to other missions, or even solely