

IPPW9 Short Course Probe Science Instrumentation Entry / Descent (*in situ* probe science)

Accelerometers / Gyros

Francesca Ferri Università degli Studi di Padova, CISAS "G. Colombo"

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

EDLS measurements

- Entry, Descent, Landing System (EDLS) of an atmospheric probe or lander requires mesurements in order to trigger and control autonomously the events of the descent sequence; to guarantee a safe landing
- These measurements could provide
 - the engineering assessment of the EDLS and
 - essential data for an accurate trajectory and attitude reconstruction
 - and atmospheric scientific investigations
- EDLS phases are critical wrt mission achievement and imply development and validation of technologies linked to the environmental and aerodynamical conditions the vehicle will face.

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

- Inertial measurements during ballistic entry and descent phases allow for passive navigation control and triggering events of mission sequence.
- Accurate trajectory and attitude reconstruction
- Retrieval of atmospheric vertical profiles along the probe trajectory
- Impact detection

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Inertial navigation of an entry probe

Reference frames

Velocity fixed frame coefficients

 $\rm C_{\rm D}$ drag force

 \mathbf{C}_{L} lift force

Body fixed frame coefficients

 C_A axial force

 $\rm C_{\rm N}$ normal force

 C_p pitching moment

• Inertial reference frame (IRF)

- Acceleration =>change in velocity and position
- Gyroscopic sensors => Rotational motion of the body and orientation of accelerometers wrt IRF
- Acc+gyros data are combined together in order to define translational motion of the vehicle within IRF and to calculate the position.
- Inertial systems are self-contained within the vehicle (e.g.strap-down sensors, rigidily fixed to the vehicle) and provide estimate of changes of position.
- Need for accurate knowledge of starting vehicle position (e.g. entry state)
- Knowledge of aerodynamics / environment conditions the vehicle will face.

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Force-balance (Servo) Accelerometers

HASI ACC principle, performance and accomodation

	Range		Resolution	
Mode	High Gain	Low Gain	High Gain	Low Gain
High resolution	±2 mg	±20 mg	0.3 µg	3 µg
Low resolution	±1.85 g	±18.5 g	0.3 mg	3 mg

- Allow very high accuracy
- Comparatively complex & heavy
- Comparatively sensitive to mechanical loads
- A typical science instrument for entry and descent: the most accurate ever flown in a planetary probe.

Example: Huygens HASI x-axis servo accelerometer

Туре	Honeywell QA 2000
Mass (servo sensor / total)	71g / 300g
Power	~1.7 Watts
Accuracy	1% full scale

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

'Standard' Accelerometers

<image>

• Very lightweight and robust

SCHEMATIC

- Moderate accuracy
- Low power, simple electronics
- Used on Huygens, Deep Space 2, ...

Example: Huygens HASI X / Y / Z accelerometers

Туре	Endevco 7264A-2000T
Frequency range	0 – 1000 Hz (5%)
Range / Resolution	+/- 20g / +/- 50 mg
Nonlinearity / Hysteresis	+/- 3%
Mass	1g (sensor)

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

• Based on Micro-ElectroMechanical Systems

- Very lightweight and robust
- Good accuracy
- Low power, simple electronics
- Often used in automotive applications
- Very high EMI/RF tolerance
- Qualification for space required

Example: AD ADXL78 1-axis MEMS accelerometer sensor

Mass / size	< 1 g, 5 x 5 x 2 mm
Acceleration range	+/- 35 g to +/- 70 g
Temp range	-40 to +105 deg C
Accuracy	Linearity 0.2%
Power @ Supply voltage	6.5 mW @ +5 V

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Gyroscopes ('Gyros')

Gyroscope

- Devices for measuring <u>orientation</u>, based on the princicle of conservation of <u>angular momentum</u>
- Conventional: mechanical gyros

Optical Gyros (laser gyros)

- Use interferometric methods to sense angular motion (Sagnac interferometer)
- No moving parts
- No gravity effects
- High bandwidth
- Very reliable
- Low power

Laser ring gyro + electronic unit

Fiber Optic Gyros (FOG)

- Use optical fibre as propagation path
- Measure angular motion by detecting phase difference
- Very robust

Example: high performance fiber optic gyro performance for space

Туре	FOG 2500, Northrop Grumman
Drift rate	0.001 deg / hr
Max rate	100 deg / sec
Power	5W
Size	170 mm dia x 54 mm
Mass	~2 kg

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

IMU combines multiple sensors plus data processing electronics in one unit

- Accelerometers
- Gyros
- Acceleration (and derived velocity)
- Rotation (and rotation rate)

Typical parameters (Honeywell IMU)

I/F / rad-hardness	RS422 / MIL1553, 100 krad
Mass	4.44 kg typ.
Size	~233mm dia x 169mm
Power	22W typ.
Gyro bias (1-sigma)	< 0.005 deg /hr
Scale fator	< 1 ppm

Example: NASA MER IMU Litton LN-200S

Sensor Assembly with Circuit Cards

- 3 solid state fiber optic gyros
- 3 solid state silicon accelerometers.

Mass	750 g
Size	~90mm dia x 90mm
Power	12W
MTBF	20.000 hrs

Accuracy related parameters

- Bias, Scale factor (acc, gyro)
- Random walk (gyro)
- Measurement limits (acc & rotation)

16-17 June 2012, **Toulose**, France

IPPW9 Short Course on Probe Science Instrumentation Technologies

Operational scenario

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

The Huygens Probe Mission

An example for a probe mission, data analysis and technical and science issues

Huygens Probe Exploded View

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Huygens Integration

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Huygens Atmospheric Structure Instrument (HASI)

Study of Titan's atmosphere and surface

- by measuring
- acceleration (ACC)
- pressure (PPI)
- temperature (TEM)
- electrical properties (PWA, RAU)
- > Heritage: Pioneer Venus, Venera, Galileo, and Viking probes

esa

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Huygens mission scenario

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Huygens Descent Control Sub-System

- Sequence of 3 parachutes and mechanisms that take Huygens from Mach 1.5 to the surface
 - • T_0 Mach 1.5
 - Pilot Chute Deployed
 - •T₀ + 2.5s
 - Back cover released
 - Main parachute deployed
 - •T₀ + 35 sec
 - Front Shield released
 - Science starts
 - • T_0 + 15 min
 - Main Parachute released
 - Stabilising Drogue deployed
 - •Maximum descent time: $2\frac{1}{2}$ hours

16-17 June 2012, Toulose, France

IPPW9 Short Course on Probe Science Instrumentation Technologies

Huygens mission sequence at Titan

HASI ACC subsystem

 1 servo accelerometer (SUNDTRAND, now Honeywell QA 2000-30) on X axis (the Probe spin axis) with switchable range

	Range		Resolution	
Mode	High Gain	Low Gain	High Gain	Low Gain
High resolution	±2 mg	±20 mg	0.3 µg	3 µg
Low resolution	±1.85 g	±18.5 g	0.3 mg	3 mg

- **3 piezo-resistive accelerometers** (ENDEVCO 7264A-2000T) on the X, Y or Z axes of the Probe
- **2 AD 590 temperature sensors**, one inside the servo accelerometer case (Temp 1) and one attached to the aluminium alloy accelerometer mounting block (Temp 2) for compensation.

Main objective: to measure the **Huygens probe's acceleration** and thus to derive **Titan's atmospheric density profile** and for **impact detection**.

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

ACC performance: comparison with previous missions

alla	
-	

				idil.
8				
	0,000	100		
	No.			
			01	

Missions	Uncertainty in High Sensitivity Range (µg)	
Venera 8-14	3x10 ⁶	
Viking 1 & 2	±6.1	
Pioneer Venus	Most sensitive channels (100 μ g & 10 mg) failed	
Galileo probe	4000	
Mars Pathfinder	~ 4 (noise)	
Mars Exploration Rover (MER)	35 (noise)	
Huygens CASU Huygens RASU	range 0-10 g; resolution 4 mg range 0-120 mg; resolution 470 μg	
Huygens HASI ACC	Noise: 0.3; resolution: 0.3; offset: ≤ 4	

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

- Sensors have been characterized, tested and calibrated at ACC subsystem, HASI instrument and Huygens probe level.
- Beside AIV campaign, a specific special test to characterise the alignment of HASI ACC Servo-to-probe axes has been performed by rotating the probe on a frame in 1-degree steps and recording Servo outputs at each step.

Conversion from raw units (Volts) to scientific units (acceleration in ms⁻²)

$$a(m.s^{-2}) = \left(\frac{1}{sf(A/m.s^{-2})} \cdot \frac{a(V)}{R_L(\Omega)}\right) - offset(m.s^{-2})$$

where: $sf = scale \ factor$, $R_L = load \ resistor$.

• Cruise in-flight check-outs and calibration.

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

During Cassini/Huygens cruise phase, in-flight checkouts (CO) are performed approximately twice a year

Aim: to test the probe and its sub-systems through a simulated descent sequence

For the HASI-Servo ACC, in-flight checkouts provide an opportunity to monitor the accelerometer's **offset** in a zero g environment and to characterise the **noise** performance.

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

14th January 2005

Huygens mission

Entry phase

Descent phase

HASI was the first instrument to be operating

ACC measurements started at ~2800 km

 After parachute deployment, direct p & T, and electrical measurements

At surface: impact detection, meteorological conditions & electrical properties

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

- HASI switched on before atmospheric entry
- HASI ACC measurements starting from ~ 2800 km
- Most accurate accelerometer ever flown in a planetary probe
- Sensitivity threshold (0.3µg≅3E-06 m/s2) allows to measure Probe coning motion.

ACC provided by UKC-Open University Cols: J.C. Zarnecki, J.A.M. Mc Donnell

16-17 June 2012, Toulose, France

IPPW9 Short Course on Probe Science Instrumentation Technologies

Entry detection

T_a arming of chute deployment pyro device (PDD); threshold 9.48 m/s²

- S_0 (Pilot chute deployment) threshold 10 m/s2
- S_0 detection + majority voting by CDMU

T₀ (S₀ + 6.375s) PDD firing time

Huygens **CASU** (Central Accelerometer S/S Unit) a triply redundant acc on the X axis (SYSTRON DONNER 4310 F linear servo acc, range 0-10 g, resolution 4 mg)

Huygens **RASU** (Radial Accelerometer S/S Unit) a double reduntant acc in the Z axis (range 0-120 mg, resolution 470 μ g)

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

16-17 June 2012, Toulose, France

IPPW9 Short Course on Probe Science Instrumentation Technologies

HASI ACC: beginning of descent

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

ACC XServo during descent

Main parachute jettison – Drogue chute deployment

16-17 June 2012, Toulose, France

IPPW9 Short Course on Probe Science Instrumentation Technologies

Huygens spin vanes

- Passive stabilization Huygens spin
- Use for dense atmosphere (e.g. Titan, Venus)
- Aerodynamics / environment need to be <u>well</u> <u>understood</u>: Huygens spin anomaly
- Spin measured by Huygens RASU (Radial Accelerometer Unit) a double redundant acc on the Z axis (range 0 - 0.12 mg)

Huygens in-flight spin profile

Time (SCET UTC)

$$L = C_L * q * A = C_L * \frac{1}{2} * \rho * v^2 * A$$

where $L = \text{lift force}, C_L = \underline{\text{lift coefficient}}, q = \underline{\text{dynamic pressure}}, \rho = \underline{\text{density}}, v = \text{speed}, \text{ and } A = \text{area}$

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies ACC / Gyros F. Ferri /UniPD-CISAS

11.10(08)

11:40:00

• Algorithms for simulation and reconstruction of trajectory and attitude reconstruction has been developed and validated with mission data and from balloon experiments:

6 DoF dynamical model + Extended Kalman Filter for the entry phase: modelling of system dynamics and sensors (aerodynamical forces and ACC data) [Aboudan et al. PSS 2008]

- **1 DoF dynamical model** of the Probe under parachute with **Kalman filter** and **sensor fusion** (ACC, PPI,TEM, GCMS post Ta atmosphere reference) [Bettanini et al. 2008]
- **3 DoF reconstruction algorithm** for atmospheric profiles reconstruction [Colombatti et al. PSS 2008; Gaborit et al. 2004; Atkinson et al. 2005] starting from a nominal entry state reconstruction of the trajectory and derivation of the atmospheric profile using hydrostatic equilibrium

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

- To combine two independent estimates of a variable to form a weighted mean value
- Requires careful modelling of system dynamics and sensors
- State equations including statistical models of random phenomena: e.g. mitigate random and in-run biases on accelerometers and gyros
- Statistical description of the system uncertainty and measurements errors.
- Extended Kalman Filter (EKF) allows for dealing with no linearity in dynamical model with more accuracy than standard algorithms

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

$$a_A = a_X$$
, $a_N = \sqrt{a_Y^2 + a_Z^2} \Rightarrow \tan(\alpha) \simeq \frac{a_N}{a_A}$

Acceleration can be integrated twice to compute velocity and position

$$a \Rightarrow v = \int a \, dt \Rightarrow p = \int v \, dt$$

3. Using the knowledge of aerodynamics of the probe (AEDB) the atmosphere density can be computed from measured axial acceleration

HAS

Steps from 1 to 3 can be iterated many times until convergence

AoA / attitude computation is the most important task for accurate trajectory reconstruction

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

H.A.S.I. Huygens 6 DoF dynamical model + EKF

Entry phase ends before terminal dynamical instability phenomena so AoA is constrained to be less than 2 deg., about 1 deg during deceleration phase.

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

H.A.S.I. Huygens 6 DoF dynamical model + EKF

[Aboudan et al. PSS 2008]

16-17 June 2012, Toulose, France

IPPW9 Short Course on Probe Science Instrumentation Technologies

- Entry state (e.g. through fligth dynamics, imaging)
- Entry/Descent module **MCI evolution**:
 - cross sectional area
 - mass & CoG (including front shield ablation)
 - inertial matrix
- Parachute characteristics
- Accurate aerodynamical coefficients (as function of Ma, Re, Kn) in free molecular flow, transitional and continuum regime

<u>Requirements</u>

- X-servo ACC @ CoM
- Normal acc component needed for accurate AoA/attitude (3-axial ACC or gyros)

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Upper atmospheric profile

density profile from the top of the atmosphere (1570 km) to parachute deployment at ~ 160 km

 $\rho(z)$ =-2(m/C_DA)(a/V_r²)

 V_r and z from measured acceleration & initial conditions

Indirect temperature and pressure measurements

Credit: ESA / ASI / UPD / OU /

Hydrostatic equilibrium dp=-gpdz

Equation of state of gas $\rho = \mu p/RT$

Τ(z) , Τ=μp/ρR

[Fulchignoni, Ferri et al. Nature 2005]

16-17 June 2012, Toulose, France

IPPW9 Short Course on Probe Science Instrumentation Technologies

<u>Upper atmosphere parameters:</u> <u>uncertainty</u>

 $= \frac{2 m a}{v^2 C_d A}$

Parameter	value	comment	Uncertainty %
М	Probe mass	Measured & estimated (ablation)	~ 1%
V	Velocity relative to atmosphere	To be derived from time integration of acceleration	~ 2 %
Initial conditions	Entry state 1 sigma altitude FPA	Provided by Cassini NAV	~ 30 km ± 0.3°
C _d	Aerodymanical drag coefficient	From Huygens aerodynamical data base	5%
A	Probe cross- sectional area	Measured & estimated (ablation)	0.1%
а	Probe acceleration	measured	@1300 km ~ 5% @1200 km ~ 1%

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies ACC / Gyros F. Ferri /UniPD-CISAS

 $\Delta \rho / \rho \sim 10\%$

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

IMPACT state devoted to Probe impact detection. No ACC data transmitted until SURFACE state

Impact trace 0.5 s before impact and 5.5 s after detection (66 TM packets)

Xpiezo	at 200 Hz
Ypiezo	at 200 Hz
Z piezo	at 200 Hz

Impact detection

quadratic filtered 400 bHz Xservo LOW gain values (XS) against a threshold value (QfT)

Y(n) = QfA * Y(n-2) + QfB * Y(n-1) + QfC * Xs(n)

where Xs(n) Ys(n) Ys(n-2) Ys(n-1) QfA, QfB, QfC QfT	is the Xservo LOW gain channel output at the n-th instant; is Filter output at the n-th instant; is Filter output at the (n-2)-th instant; is Filter output at the (n-1)-th instant; are the filter coefficients (PROM default are $QfA = 0.1$, QfB = 0.2, $QfC = 0.7$); is the threshold value (PROM default is $QfT = +5$ Volt).
--	--

Formula I: Impact detection filter

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Huygens impact detection

16-17 June 2012, Toulose, France

IPPW9 Short Course on Probe Science Instrumentation Technologies

- IMPACT
 - Accelerometers can be used for to characterize the mechanical properties of the surface (e.g. Huygens SSP [Zarnecki et al. *Nature* 2005]).
 - Structural modelling of the Probe to analyse the response to the impact [Bettanini, Zaccariotto, PSS 2006]

16-17 June 2012, Toulose, France IPPW9 Short Course on Probe Science Instrumentation Technologies

Lessons learned and requirements

Viking

Galileo

Huygens

Experience and **lessons** learned with **Huygens** in perspectives for future

- velocity) by flight dynamics, probe imaging, radio tracking ...
- Instrumented heat shield for engineering assessment of entry phase and support of trajectory (and atmospheric profile) reconstruction.
- For EDLS dynamics reconstruction 3-axial ACC and/or gyros are necessary for a accurate attitude (AoA) determination
- **Redundant devices to ensure safety** (e.g. G-switch)
- Good calibration and performance assessment either through ground and in-flight tests are essential for data interpretation.
- On ground tests (like balloon experiments) are very useful for understanding sensor performance of with real data

Genesis

16-17 June 2012, **Toulose**, France

IPPW9 Short Course on Probe Science Instrumentation Technologies