

The Next 50 Years of Planetary Exploration with Probes

James A. Cutts

Jet Propulsion Laboratory

California Institute of Technology

Mars and Venus in the pre spacecraft era

Martian canals as perceived by Percival Lowell

First Planetary Mission

Mariner 2 (NASA/JPL)

Launch: 27 Aug 1962

Venus encounter: 14 Dec 1962

Closest approach: 41,000 km

- No Earth sized magnetosphere
- No Global Ocean surface temperature >430C

Mariner 4, 6 and 7 flybys at Mars

- No canals
- A moon-like cratered surface with a thin veneer of windblown dust

First Planetary Orbiter Mission

Nirgal Vallis Mariner

Venus Exploration by USSR

 15 successful missions between 1967 and 1984

 Included flybys, orbiters, atmospheric probes, balloons and landers.

Giotto – Mission to Halley's Comet (ESA)

Halley Armada Giotto (ESA) Vega 1 (USSR) Vega 2 (USSR) Sakigake (Japan) Suisei (Japan

Giotto

Fly by distance 590 km

Approach speed 68 km/sec

Galileo – First probe into a gas giant's atmosphere

Key Entry Parameters

Entry speed: 47.8 km/sec

Peak Deceleration: 230g

Heat Shield Performance

Probe Mass: 339 kg

Heat Shield Mass: 152 kg

Ablated Mass: 80 kg

Scientific Results

- Measured temperature profile during entry/descent
- Determined noble gas abundances and isotope ratios
- Measured winds and turbulence during descent
- Determined cloud properties in situ

Mars Exploration Rovers

Event Spirit Opportunity
Launch Jun 10 '03 Jul 7 '03
Landing Jan 3 '04 Jan 24 '04
Site Gusev Meridiani

Distance (km) 7.73 34.47+

First sample return from an asteroid

Hayabusa Spacecraft at Asteroid Itakawa

Hayabusa's Seven Year Odyssey

- •May 2003 Launch from Kagoshima, Japan
- •Nov 2003 Spacecraft damaged by solar flare
- •July 2005 Reaction wheel damaged
- •Nov 2005 Second touchdown on Hayabusa -Hydrazine leak
- Dec 2005 Loss of attitude control and communications
- •Nov 2009 Ion thruster failure and recovery
- June 2010 Safe landing in Australia

The Next Fifty Years

Human Exploration Strategy

Optional Pathways in a Common Strategy

From presentation by Clive Neal at the Global Space Exploration Conference 2012

Robotic Exploration Strategy The Search for Life **Archaea** Methanoger Bacteria Eukarya Mars Proteobacteria Europa The Tree of Life Enceladus Titan

Riding the Information Technology Wave

Key technical drivers

- Miniaturization
- New Devices
- Software
- Ground Systems
- Space Systems

Modeling and simulation

Autonomous surface science

Planetary mission navigation

Emerging Capabilities at NASA

Sunjammer Solar Sail

Advanced Stirling Radioisotopic Generator (ASRG)

Falcon Heavy –biggest LV since Saturn V

Low Density Supersonic Decelerator (LDSD)

Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

Planetary Exploration – the Next 50 days

Mars Science Laboratory "Sky crane" landing system

Curiosity Rover

New International Players

International Venus Exploration

Why Venus?

- Proximity to earth
- Relevance to climate change
- Multiple mission modes needed
- Missions can be loosely coupled

Prognosis

- Technology investments at NASA have emerged at just the right time to revitalize planetary exploration
- Human and robotic exploration have become intertwined for future Mars initiatives
- Involvement of China and India in human exploration is positive for Mars exploration
- Immediate future will be dominated by smaller largely competitive missions in Europe and USA
- This is not sustainable for the longer term and larger strategic missions are going to be ultimately needed

Acknowledgements

- Mark Adler
- Dave Atkinson
- Andrew Ball
- Bernie Bienstock
- Torrence Johnson
- Viktor Kerzhanovich
- Satish Khanna

- Jean-Pierre Lebreton
- B. Gentry Lee
- Chris McKay
- Clive Neal
- Dave Senske
- Erik Slimko
- Brian Wilcox