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2/25 Introduction 
•  Giant planets account for more than 99% of the solar system. 

•  Ice giants (U/N) are fundamentally different from gas giants (J/S). 

•  U/N-mass exoplanets have been observed – remove observer bias from 
exoplanet distributions ⇒ U/N exoplanets are common. 

•  The ice giants also have fascinating and unique planetary environments. 
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•  Voyager 2 remains the only spacecraft to 
have returned data from Uranus – 26 
years have elapsed since that flyby. 

•  Need new in situ observations to 
constrain models, obtain ground-truth for 
exoplanet observations, and understand 
solar system formation. 



3/25 Uranus as an Ice Giant Planet 

•  Ice giant: envelope rich in “ices” (H2O, CH4, 
NH3). 

•  No interior model that is consistent with all 
constraints (gravity field, magnetic field, heat flux, 
composition, temperature). 

(a) N. Nettelmann; (b) Connerney et al. (1987) 
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4/25 Seasonal variations 
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Equinox: Rings edge-on to Sun 

Solstice: Rings face-on to Sun 

Obliquity: 98º 
Orbit: 84 Years 
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5/25 Seasonal driving of the atmosphere 
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Voyager 2 / NASA JPL 



6/25 

C.S. Arridge / UP Consortium / UCL 

Self-luminosity and temperature 
•  Uranus is cold and has a small self-luminosity. 

•  Possibly related to a collision early in the life of Uranus – dramatic loss 
of primordial heat. 

•  Could also be a seasonal effect – Uranus’ atmosphere appears to be 
more active at equinox (inhibiting convection near solstice). 

Fortney (2009) 



7/25 Rings and natural satellites 

Voyager / NASA JPL 

Paul Schenk 

NASA / ESA / M. Showalter (SETI) 



8/25 Uranus Pathfinder: Mission profile 
•  Submitted to ESA M3 call in 2010 – highly rated (last eight) but not selected. 
•  Launch and transfer: 

–  Soyuz launch (Kourou) in 2021, arrive in 2037 with a variety of available transfers 
–  Transfer not more expensive than mission to Saturn but taking 15.5 years. 
–  Assumed chemical propulsion – SEP not studied. 
–  Inject to GTO then separate propulsion module used to achieve vinf. 
–  Poorly known ring plane hazards limit orbital insertion periapsis => limit injected orbit. 
–  Aerocapture not considered (low TRL). 

•  Near polar science orbit: great for interior/magnetic field studies. 
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9/25 Electrical power 
•  Solar energy flux ~3.5 W m-2 at Uranus requiring 

>400 m2 solar arrays c.f. 64 m2 arrays on Rosetta. 

•  Not viable with present technology. 

•  Use radioisotope power sources employing 241Am 
rather than 238Pu: 

–  Longer half-life than 238Pu. 
–  Wth(241Am)=0.11 W/kg, Wth(238Pu)=0.57 W/kg 
–  Lower Wth ⇒more fuel is required. 
–  Also managed at a system level using more efficient 

Stirling engine (c.f., ASRG). 

•  241Am is obtained from Am2O3 in spent fuel rods. 
–  241Am is decay product of 241Pu with t1/2 of 14.4 years. 
–  No complex reprocessing technology – chemical 

separation. 

•  Low TRL devices. 

NASA 
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10/25 Uranus Pathfinder orbiter configuration 
•  Reuse Mars Express/Rosetta heritage platform. 
•  Spin (during hibernation) and three-axis stabilised (tour) – reaction 

wheels and thrusters. 
•  Hibernate during cruise to reduce cruise phase costs. 
•  ORS instruments on one face of the spacecraft and similarly bore-

sighted. 
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11/25 Scientific payload 
•  Focused set of high TRL instruments with strong European heritage. 

•  Particles and plasma, gravitational and magnetic fields, and optical 
remote sensing. 

•  Mass: 53.8 kg (CBE) [62.6 kg 
with DMM]. 

•  Power: 88 W [with DMM]. 

•  Telemetry: 4.2 Gbit per orbit (75 
Mbit per downlink in Ka band). 

•  Limited electrical power ⇒ 
observing plans need to be 
carefully constructed. 



12/25 Public engagement and Uranus 
•  European mission to a distant and poorly understood 

world like Uranus provides a unique public 
engagement opportunity. 

•  Planetary missions continue to capture the public’s 
imagination and attract school children/students to 
science and engineering. 

•  Uranus’ moons named after literary characters – 
opportunity to engage with literature/arts. 

•  Exploity new media – many of the UP consortium 
already engage with the public on Twitter. 

•  Leverage public engagement opportunities: British 
Science Festival (UK) & Highlights of Physics (DE). 

•  Special campaigns to maintain momentum during long 
interplanetary transfer. 

Voyager 2 / NASA JPL 



13/25 Probe science goals 
•  Most crucial measurement: heavy element/noble gas abundances/key 

isotope ratios – constraints on models of planet formation. 
–  Isotope ratios H, C, N, even S, O. 
–  Key measurement of noble gas and isotopic ratios only require a shallow 

probe (to ~1 bar). 
–  Deep probes (to ~>5 bar ) permit determination of bulk CH4 and H2S 

abundances as well as whether S/N ratio is enriched relative to solar. 
–  Can only be made in situ – provides crucial ground truth for orbiter/ground-

based observations and measurements. 
–  Determine if gas giant and ice giant formation mechanisms are 

fundamentally different. 

•  Theoretical models have difficulties generating the strong winds found 
in the upper atmospheres (~600 km/h at J, 1500 km/h on S/N). 
–  Energy distribution, depth of zonal wind structure, effect of solar energy 

and internal heat flux high priorities. 
–  Nephalometer and accelerometer/USO will allow the measurement of key 

atmospheric properties and profiles along the probe trajectory. 



14/25 NRC Planetary Decadal Survey 
•  Rapid mission study for the NRC Planetary Decadal Survey 

2013-2023 in response to Uranus community white paper led by Mark 
Hofstader (JPL). 

•  Rapid mission study for the 
NRC Planetary Decadal 
Survey 2013-2023 in 
response to Uranus 
community white paper led 
by Mark Hofstader (JPL). 

 
•  Main design centre was 

APL/JHU with support from 
NASA Glenn & Langley. 

•  $1.5B – 1.9B mission (sub-
flagship) in FY15. 



15/25 Decadal study mission profile 
•  Launch on an Atlas V with an interplanetary cruise time of 13 years. 
•  Five-year SEP stage using solar arrays, with a single Earth GA. 
•  Jettison SEP stage to leave ASRG-powered orbiter for Uranus entry 

and orbital tour. 
•  Atmospheric entry probe prior to UOI. 
•  Satellite tour. 

W.B. Hubbard / JHU-APL / NASA 



16/25 Decadal survey orbiter 
•  Three-axis stabilised during orbital tour / spin stabilised during 

hibernation/probe release. 
•  Reaction wheels/thrusters for AOCS. 
•  Powered by 3 ASRGs providing 438 W (367.5 W) BOL (EOL). 

W.B. Hubbard / JHU-APL / NASA 



17/25 Decadal survey planetary tour 
•  Orbit: P=21 days, rp=1.3 RU, ra=51.3 RU, i=97.7º 

•  Encounter five major natural satellites twice: Miranda, Ariel, Umbriel, 
Titania, and Oberon. 

•  Additionally four untargetted flybys of Umbriel. 
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W.B. Hubbard / JHU-APL / NASA 



18/25 Probe design 
•  Thermal: 4 RHUs (free flight) / foam insulation (after aeroshell deployed). 
•  Materials: Al aeroshell – Ti pressure vessel. 
•  Stabilisation: spin-stabilised in free flight, aerodynamically stabilised 

during descent by 3.25 m diameter parachute. 
•  Data: 200 kbps. 
•  Power: 69 W from a 49 Ah battery. 
•  Payload: Mass spec, Atmospheric structure, Nephalometer, USO. 

W.B. Hubbard / JHU-APL / NASA 



19/25 Entry timeline 
•  Spin-stablised in free-flight – spin imparted by orbiter rolling. 
•  Probe separates from orbiter 29 days before UOI. 
•  Probe visible to Earth and probe. 
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20/25 Probe entry profile 

W.B. Hubbard / JHU-APL / NASA 



21/25 Bilateral opportunities 
•  Share costs between space agencies – probe/orbiter provided by 

different agencies similar to Cassini-Huygens. 

•  Uranus mission: ESA probe attached to NASA orbiter, or vice-versa? 

•  Alternative model: Probe & limited delivery platform / separate orbiter. 
–  Defer risk. 
–  Delivery platform as a flyby vehicle or an orbiter? 

•  Orbiting delivery platform could carry minimal payload (e.g., 
magnetometer and radio science) and perform two-point sampling of 
the uranian system. 

•  Or deliver multiple probes to sample two locations. 



22/25 ESA CDF Probe Studies 
•  CDF probe studies aimed at supporting upcoming CV calls. 
•  Based on Pioneer Venus probe heritage. 
•  Very little change in probe characteristics from Venus to outer planets. 
•  313 kg Uranus probe. 

ESA/ESOC 



23/25 Probe configuration 

ESA/ESOC 



24/25 Interplanetary transfers 
•  Considered delivery platforms in the 2025-2035 timeframe. 
•  Launch vehicles: investigated Soyuz (three marginal solutions) and 

Ariane 5 (three good solutions). 
•  Assumed 300 kg probe. 

•  Soyuz 
–  Transfer time 12.7 – 15.8 

years. 
–  Vinf = 6.5 – 10.9 km/s 
–  No dual probe solution. 

•  Ariane 5 
–  Transfer time ~ 13 years 

(comparable with 
decadal study profile). 

–  Vinf = 4.2 – 6.8 km/s 
–  Permits dual probes. 

ESA/ESOC 



25/25 Summary 
•  Probe missions to Uranus provide the only way to resolve some issues 

on the origin and evolution of ice giants – but solely probe-based 
missions miss out on the wealth of science to be harvest by an orbiter. 

•  Despite funding crises in the US and deep cuts to planetary exploration, 
a Uranus mission has remained high priority. 

•  NASA’s Outer Planets Assessment Group established Uranus WG. 

•  Uranus Pathfinder 
–  Continuing to develop mission concept. 
–  Platform studies ongoing. 
–  Looking towards resubmission for M4 or L2 in 2013/14. 
–  Consortium continues to grow – please participate to the development of 

science case / payload definition / platform / mission profile. 

Arridge et al. (2012) Exp. Astron. 33(2) pp. 753-792 (M3 special issue) 
Web: http://bit.ly/UranusPathfinder 
Email: csa@mssl.ucl.ac.uk   Twitter: @chrisarridge 


