TEST CASE 6: Metallic cavity filled with PVC Monostatic RCS and ISAR images

Chairmen : Jérôme SIMON, Frank WEINMANN

Contacts: jerome.simon@onera.fr, frank.weinmann@fhr.fraunhofer.de,

1. Definition of the Geometry

The target is a metallic cavity filled with a PVC Plate (2cm)):

- Thickness of plates: 1 cm
- Internal dimensions: 10x12x12 cm
- PVC Plate = 2cm

The centre of the interior cube and the phase centre are assumed to be located at (x,y,z) = (0,0,0).

2. Simulation Parameters

The time dependency is assumed to be $exp(j\omega t)$.

The object described above shall be studied at the frequency f = 30 GHz. At this frequency, the relative permittivity of the material is approximately $\varepsilon_r = 2.7$. For all simulations, $\varepsilon_r = 2.7 - j \ 0.02$ shall be assumed.

2.1. Case (a): Monostatic RCS of the target

The monostatic RCS shall be simulated at the frequency f = 30 GHz in the azimuth plane $(z = 0, \phi = 0^{\circ}...180^{\circ}, \Delta\phi = 0.5^{\circ})$ for both vertical polarisation ($\theta\theta$ -polarisation, i.e. **E** perpendicular to the *xy*-plane) and horizontal polarisation ($\phi\phi$ -polarisation, i.e. **E** field in the *xy*-plane).

2.2. Case (b): ISAR image

For the target described above, the RCS shall be simulated in the frequency range from 25 to 35 GHz with $\Delta f = 100$ MHz (i.e. 101 frequencies) for the azimuth angles $\phi = 0^{\circ}...180^{\circ}$, $\Delta \phi = 0.5^{\circ}$ for both polarisations ($\theta \theta$ -polarisation and $\phi \phi$ -polarisation). Due to the symmetry of the object, a full ISAR image can be generated from these data.

3. Data Formats

The results will be stored in one ASCII file for Case (a) and one ASCII file for Case (b).

3.1. Case (a) :

The file will contain on each row the data :

ϕ , $\sigma_{ heta heta}$, $\sigma_{\phi\phi}$

where ϕ is the angle in degrees, $\sigma_{\theta\theta}$ and $\sigma_{\phi\phi}$ are the RCS in dBsm in $\theta\theta$ -polarisation and $\phi\phi$ -polarisation.

3.2. Case (b) :

The file will contain:

f, ϕ , $Real(E_{\theta\theta})$, $Imag(E_{\theta\theta})$, $Real(E_{\phi\phi})$, $Imag(E_{\phi\phi})$

where f is the frequency in GHz, ϕ is the angle in degrees, $Real(E_{\theta\theta})$, $Imag(E_{\theta\theta})$, $Real(E_{\phi\phi})$, $Imag(E_{\phi\phi})$ are the real and imaginary parts of the scattered field strengths in $\theta\theta$ -polarisation and $\phi\phi$ -polarisation.