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Distributed Propellers Aircraft Concept

FIGURE 1 – ESAero NASA X-57 Maxwell [2] 1
FIGURE 2 – Vahana, the self-piloted, EVTOL
Aircraft from A3 by Airbus. 2

Features :
- Multiple propellers distributed along the

wing span

- OEI condition less stringent

- Wing area reduced/Shorter Takeoff Field
Length

- High CL,max

Issues : Unconventional configuration
- No semi-empirical formula

- Need cheap prediction tools ) low fidelity

1. NASA Illustration, Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR) project,
https://www.nasa.gov/centers/armstrong/features/CAS_showcase.html, Feb 2017

2. Vahana, the self-piloted, EVTOL Aircraft from A3 by Airbus, https://www.airbus.com, Jun 2018
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Transformation

Objectives :
Determine the viability of a concept and
optimize it in a limited domain
Monitor a large number of parameters and
interaction between disciplines

Estimate the aircraft performance for a
given mission

Reduce the number of late modifications

Expected outcomes :
New weight distribution

Propellers-wing interaction,
Propellers-control surfaces interaction

Specific modules integration
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Framework

General multidisciplinary analysis framework[3] 3
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FIGURE 3 – Multidisciplinary design analysis workflow.

3. A.B. Lambe et al., Extensions to the Design Structure Matrix for the Description of Multidiplinary Design, Analysis, and Optimization Processes,
Structural and Multidisciplinary Optimization, 2012
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Fixed-wing Aircraft Sizing Tool - FAST

In-house multidisciplinary design analysis tool for aircraft with distributed propulsion
system

Specific modules :
Propulsion module
Geometry initialization module
Aerodynamic module
Mass breakdown module
Global flight and performance prediction module

Input :
Top level aircraft requirements (TLAR)
Aircraft geometry description
Propulsive parameters

Output :
Mission profiles
Aircraft geometry sizing
Aerodynamic components’
characteristics
Weight and balance
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Fixed-wing Aircraft Sizing Tool (FAST)

Preliminary design tool (ONERA & ISAE-Supaero)[4] 4
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Geometry

Aerodynamics and Weight estimation

Performance evaluation
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4. P. Schmollgruber et al., Use of a Certification Constraints Module for Aircraft Design Activities, AIAA Aviation Meeting, 2017
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State of the art

  
 

[Weiberg 1958] 

! Wind tunnel 
test 

! Twin-engine 
model with TE 
flap, high AR, 
thick and 
straight wing 

 [Witkowski 1988] 

! Wind tunnel 
test 

! Semi empirical 
! Vortex Lattice 

Method 
 

 [Veldhuis 2004] 

! VLM-BEM 
model 

! Navier-Stokes 
model 

 [Chatot 2014] 

! Extended of 
steady actuator 
disk to 
unsteady flows 

 [Agostinelli 2015] 
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! Four propeller 
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 [Moens 2001] 

! Euler and 3D 
Navier Stokes  

! Actuator Disk 
Model  

 

 [Hunsaker 2006] 
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with 
Momentum 
Conservation 
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! Lifting Line 
Theory 

 [Ferraro 2014] 

! Truckenbrodt 
3D lifting 
surface method 
coupled with 
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 [Borer 2015] 

! Blade shape 
profile and 
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using 
MATLAB® 
and then fed 
into Xfoil 

! Post-
processing 
results with 
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FIGURE 4 –
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Proposed framework model
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Proposed framework model

FIGURE 5 – Workflow of aerodynamic module (linear)
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Workflow

FIGURE 6 – Workflow of aerodynamic module (non-linear with high lift devices)
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Propellers induced velocity

Propellers induced velocity :
Uniform blade loading
Froude and Blade Element Theory

FIGURE 7 – Example of propellers induced velocities with the BET
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Vortex Lattice Method

Reduced computational costs ) avoid chord-wise discretization
Lift curve slope fixed by distance between vortex bound and collocation point
Zero-lift angle in the VLM right-hand-side term
Additional mesh for defining the wake path [7] 5

FIGURE 8 – Classical VLM configuration FIGURE 9 – Modified VLM configuration

5. Yahyaoui, M. and al., Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap
and Aileron Deflection, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and
Manufacturing Engineering ; Vol. 8, num. 10, 2014
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4 Verification and Synthesis Results
Validation - Aerodynamic model
Propeller-Wing Interaction -Linear
Propeller-Wing Interaction - Non-linear with high lift device
Validation - FAST
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Test case - NASA TN D4448 [5] 6

TABLE 1 – Specifications of the model [5].

Dimension Short
wing span

Medium
wing span

Span, m 13.21 14.61
Area, m2 30.6 32.8
Mean aerodynamic
chord, m

2.38 2.32

Aspect ratio 5.71 6.52
Taper ratio 0.554 0.507
NACA airfoil section 632-415 632-415
Sweep of leading
edge, deg

2.88 2.88

Root chord, m 2.98 2.98
Tip chord, m 1.65 1.51

FIGURE 10 – Geometry model [5]

6. Page et al., Large-scale wind-tunnel tests of a deflected slipstream STOL model with wings of various
aspect ratios, NASA TN D4448, 1968
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CL � ↵ curves for three different tools

FIGURE 11 – Tc’ = 1.0 FIGURE 12 – Tc’ = 2.4
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Lift and drag polars of medium wing span

FIGURE 13 – Tc’ = 3.8 FIGURE 14 – CL � CD curves for 3 Tc’
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Lift and drag polars for short wing span

FIGURE 15 – Tc’=1.0
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Lift and drag polars for short wing span

FIGURE 16 – Tc’=4.9
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Aircraft - Smooth configuration - Propellers on
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FIGURE 17 – Full a/c configuration - no flaps - Tc = 0.90 - NACA TN 4365 [6] 7.

Validation of the model for propellers’ induced velocity : ✏%,cl,max = 8%
No convergence for steep stall

7. Weiberg and al., Large scale wind-tunnel tests of an airplane model with an unswept, aspect-ratio 10 wing,
two propellers and area-suction flaps, NACA TN 4365, 1958
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Aircraft - High-lift configuration - Propellers on
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FIGURE 18 – Full a/c configuration - flaps 40� - Tc 0.75 - NACA TN 4365 [6] 11.

Lack of accuracy on ↵L,max , but not on cl,max : ✏%,cl,max = 1%

7. Weiberg and al., Large scale wind-tunnel tests of an airplane model with an unswept, aspect-ratio 10 wing,
two propellers and area-suction flaps, NACA TN 4365, 1958
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Test case - ATR 72-600

Number of passengers 70
Range 825 NM

Cruise Mach number 0.4
Approach speed 117.5 kts

TABLE 2 – Test case ATR 72-600 [1] 7

FIGURE 19 – Flight mission profile

Output ATR 72 FAST
Wing surface [m2] 61 61.1

Wing span [m] 27.05 27.08
MPL [kg] 7850 7770
OWE [kg] 12950 12801.8

MTOW [kg] 23000 24278.9
MLW [kg] 22350 21801.9
MFW [kg] 5000 4324.23

Mission fuel [kg] 2750.1 2689.1

TABLE 3 – Test case ATR 72-600 [1]

7. ATR 72-600, www.atr-aircraft.com/datas/download_center/27/fiche72_27.pdf/, Feb 2017
Baizura Bohari (ISAE/ENAC) 5th Drone Garden Workshop 2018 10 juillet 2018 33 / 43
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Output

FIGURE 20 – Climb profile FIGURE 21 – Descent profile
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5 Conclusions and Future Works
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Conclusions

We have seen :
Linear prediction of BVLM code in the presence of slipstream is
very well predicted and validated
The effects of the spanwise variation of propeller thrust on
longitudinal characteristics
Non-linear with high lift device aerodynamic analysis for the
propeller wing interaction with a very minimum computational costs
FAST has been validated for regional aircraft with conventional
propulsive systems (A320 & ATR72-600)
Aerodynamic module provides results good in agreement with
experimental measurements for preliminary design step
Both FAST and aerodynamic module are able to take multiple
propellers along the wing

Limitations of aerodynamic module :
High dependency in 2D aerodynamic data
Post-stall convergence if soft stall

Baizura Bohari (ISAE/ENAC) 5th Drone Garden Workshop 2018 10 juillet 2018 37 / 43



Plan

5 Conclusions and Future Works
Conclusions
Future Works

Baizura Bohari (ISAE/ENAC) 5th Drone Garden Workshop 2018 10 juillet 2018 38 / 43



Future Works

In the future :
To integrate the updated specific modules, aerodynamic, mass, etc.
with FAST
To continue with the MDO process focusing on the optimzation of
the propeller numbers, location and size along the wing span.
To expand the current aircraft model to hybrid electric configuration.
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Thank you

- All models are wrong, and the value of any model is only to the extent to which it
supports the purpose for which it was built.- George E. P. Box
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