

Fixed-wing UAV with transitioning flight capabilities: Model-Based or Model-Free Control approach? A preliminary study.

Jacson M. O. Barth

Advisors: Jean-Marc Moschetta (ISAE) Jean-Philippe Condomines (ENAC)

2018

ww.enac

Outline

Introduction

- Problematic
- Objective
- 2 Background
 - State of the art
 - Model-Free Control
 - Control architecture

3 Simulation results

- Transitioning flight
- Forward flight
- Uncertain parameter analysis

www.enac.t

What is a hybrid UAV?

MAVion

Dark-Knight

Cyclone

- Identification
- Modeling
- Wind-tunnel campaigns
- Costly and time consuming
- Attitude control
- Position control
- Navigation

Objective

- Control the entire flight envelope
- Great disturbance rejection
- Uncertain parameters
- Adaptable to different hybrid UAVs

Proportional Integral Derivative (PID)

[...] Although simple to tune without the knowledge of the model, PID controllers are limited in terms of disturbance rejection [...]

Linear Quadratic Regulator (LQR)

An accurate model of the system is required.

Incremental Nonlinear Dynamic Invertion (INDI)

INDI uses teste flight data to tune the control coefficients. Of course, to do this, the MAV needs to be flying with predefined control parameters.

www.enad

Model-Free Control

MFC principles

$$y_m^v = F + \alpha u \tag{1}$$

$$s^{2}Y_{m}(s) - sy_{m}(0) - \dot{y}_{m}(0) = \frac{F}{s} + \alpha U(s)$$
⁽²⁾

$$2Y_m(s) + 4s\frac{dY_m(s)}{ds} + s^2\frac{d^2Y_m(s)}{ds^2} = \frac{2F}{s^3} + \alpha\frac{d^2U(s)}{ds^2}$$
(3)

$$\frac{2Y_m(s)}{s^3} + \frac{4}{s^2}\frac{dY_m(s)}{ds} + \frac{1}{s}\frac{d^2Y_m(s)}{ds^2} = \frac{2F}{s^6} + \frac{\alpha}{s^3}\frac{d^2U(s)}{ds^2}$$
(4)

Model-Free Control

Estimator

$$\hat{F} = \frac{5!}{2T^5} \int_{t-T}^t [(T-\sigma)^2 - 4\sigma(T-\sigma) + \sigma^2] y_m(\sigma) d\sigma - [\frac{\alpha}{2}\sigma^2(T-\sigma)^2] u(\sigma) d\sigma$$
(5)

Control-loop

$$u = -\frac{\hat{F}}{\alpha} + \frac{y_d^{(v)} + \mathcal{K}(\xi)}{\alpha}$$
(6)

 $\ensuremath{\mathbf{Figure}}$ – Detailed Model-Free Control schema for a second-order system.

FIGURE – Typical flight modes of Hybrid UAVs : 1-Take-Off ; 2-Transition ; 3-Forward ; 4-Hover.

Hover-forward flight (LQR vs MFC)

Hover-forward flight (LQR vs MFC)

TABLE - LQR vs MFC : RMSE - Hovering flight

y	Scheduled LQR	MFC	SI Units
Pitch angle (With wind)	4.8131	3.2893	[°]
Forward speed (With wind)	0.3170	0.2293	[m/s]

TABLE - LQR vs MFC : RMSE - Entire flight envelope

y	Scheduled LQR	MFC	SI Units
Pitch angle (No wind)	3.0646	1.5131	[°]
Forward speed (No wind)	0.8699	1.4613	[m/s]
Pitch angle (With wind)	4.5357	2.7858	[°]
Forward speed (With wind)	1.8349	1.4700	[m/s]

FIGURE – Typical flight modes of Hybrid UAVs : 1-Take-Off ; 2-Transition ; 3-Forward ; 4-Hover.

Forward flight

M. O. Barth / Simulation results / Forward flight

The French civil Aviation University

Ecole Nationale de l'Aviation Civile

Forward flight - actuators

FIGURE – Propeller speeds ($\omega_l < 0$ and $\omega_r > 0$) due to counter-rotation sense and the elevon deflections (δ_l and δ_r), convention negative for pitch-up.

ww.enac

Uncertain parameter analysis

$\ensuremath{\mathrm{TABLE}}$ – Fixed-Wing specifications

Parameters	Cyclone	Dark-Knight	SI Units	Δ %
Mass	0.852	0.586	[Kg]	45.39
I_{xx}	0.0036	0.0072	$[Kg m^2]$	52.3
I_{yy}	0.0036	0.0072	$[Kg m^2]$	52.47
I_{zz}	0.0036	0.0072	$[Kg m^2]$	51.2
Propeller radius	0.2032	0.1524	[m]	33.33
Mean Chord	0.17	0.175	[m]	2.94
Wingspan	0.88	1	[m]	13.64
Wing area	0.1496	0.175	$[m^2]$	16.98

Uncertain Parameter Analysis

Jacson M. O. Barth / Simulation results / Uncertain parameter analysis

Uncertain Parameter Analysis - Actuators

- Forward-hover transition
- Stability analysis
- Position control
- Navigation
- Real flights

Acknowledgments

- François Defaÿ
- Leandro Lustosa

Conclusion

Thanks for your attention !

