Fleets of UAVs for wildfire monitoring

Rafael Bailon-Ruiz

LAAS-CNRS

10/07/2018

The Fire-RS project

Provide fire responders an automated tool for wildfire remote monitoring.

Universida_{de}Vigo

EUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Design and construction of a communication CubeSat & deployment of ground fire sensors Fixed-wing UAV deployment and operation

Situation assessment and observation planning (SAOP) Situation Assessment and Observation Planning

An active perception machine:

 Build a map of the observed phenomenon Plan observations for a fleet of UAVs.

Very brief introduction to wildfires

- Wildland areas
- Often concomitant
- Size: Up to 1000 km²
- Propagation speed: Typically from 1 km/h to 10 km/h

- Propagation speed and direction is dynamic
 - Wind speed and direction
 - Terrain slope
 - Fuelbed

Wildfire propagation models

Inputs:

- Elevation map
- Fuel map
- Coarse wind forecast
- Tools:
 - Ground level wind simulation
 - Wildfire simulator

Wildfire forecast

Fire mapping

Establish a relation between every pixel in a geo-tagged image and its corresponding location in the world

7/19

Fire mapping

Establish a relation between every pixel in a geo-tagged image and its corresponding location in the world

- + IR spectrum image
- + GPS position & elevation
- + Camera pose
- + Digital Terrain Map (DTM)
- = Fire perimeter map

7/19

Fire mapping

Establish a relation between every pixel in a geo-tagged image and its corresponding location in the world

- + IR spectrum image
- + GPS position & elevation
- + Camera pose
- + Digital Terrain Map (DTM)
- = Fire perimeter map
- + Data assimilation techniques
- + Evolution of the fire map
- = Wildfire model parameters

Observing wildfires: problem characteristics

Phenomenon:

- Wildfires are only observable at the fire front
- \blacktriangleright The fire front evolves with time \rightarrow Observations have to be scheduled
- Highly combinatorial: Multiple UAVs × multiple fronts

UAVs: motion and time of flight constraints

- Round-trip
- Mountainous regions: 3D motion
- Wind drives fire ... and UAVs

A fixed-wing motion model: 2D Dubins paths

The shortest path connecting two oriented points for a vehicle...

- moving forward V > 0
- with constant speed
- and bounded turn radius $|\dot{\psi}| \leq u$

A fixed-wing motion model: 2D Dubins paths

The shortest path connecting two oriented points for a vehicle...

- moving forward V > 0
- with constant speed
- and bounded turn radius $|\dot{\psi}| \leq u$

3D Dubins airplane paths

- Horizontal and vertical motions decoupled
- 3 types of paths depending on the destination altitude [Chitsaz'07]:
 - Low altitude: destination reached with $\gamma \leq |\bar{\gamma}|$
 - High altitude: Make helices with $\gamma = |\bar{\gamma}|$
 - Medium altitude: Extend the path length

Airplane paths in windy conditions

• Dubins paths get distorted: Airspeed \neq Ground speed

Dubins airplane with wind

Dubins airplane with wind

3D + wind ?

Observing wildfires: problem characteristics

Phenomenon:

- Wildfires are only observable at the fire front
- \blacktriangleright The fire front evolves with time \rightarrow Observations have to be scheduled
- ► Highly combinatorial: Multiple UAVs × multiple fronts

UAVs: motion and time of flight constraints

- Round-trip
- Mountainous regions: 3D motion
- ▶ Wind drives fire ... and UAVs

The orienteering problem (OP)

Extension of the traveling salesman problem (TSP)

In a graph, determine a subset of nodes to visit, and in which order, so that the total collected score is maximized and a given time budget is not exceeded [Golden'87][Vansteenwegen'11]

The orienteering problem (OP)

Extension of the traveling salesman problem (TSP)

In a graph, determine a subset of nodes to visit, and in which order, so that the total collected score is maximized and a given time budget is not exceeded [Golden'87][Vansteenwegen'11]

Numerous variations of the OP:

- Team orienteering Problem (TOP) [Chao'96]
- Team Orienteering Problem with Time Windows (TOPTW) [Montemanni'09]
- Dubins Orienteering Problem (DOP) [Penicka'17]

The orienteering problem (OP)

Extension of the traveling salesman problem (TSP)

In a graph, determine a subset of nodes to visit, and in which order, so that the total collected score is maximized and a given time budget is not exceeded [Golden'87][Vansteenwegen'11]

Numerous variations of the OP:

- Team orienteering Problem (TOP) [Chao'96]
- Team Orienteering Problem with Time Windows (TOPTW) [Montemanni'09]
- Dubins Orienteering Problem (DOP) [Penicka'17]

Our problem encompasses all those extensions!

The Orienteering Problem is NP-hard!

- The Orienteering Problem is NP-hard!
- Variable Neighborhood Search: generic metaheuristic for global optimization problems

- The Orienteering Problem is NP-hard!
- Variable Neighborhood Search: generic metaheuristic for global optimization problems
- Given an initial plan, VNS works by chaining:
 - 1 A descent phase improving a particular aspect of the solution searching in *plan's space*

- The Orienteering Problem is NP-hard!
- Variable Neighborhood Search: generic metaheuristic for global optimization problems
- Given an initial plan, VNS works by chaining:
 - 1 A descent phase improving a particular aspect of the solution searching in *plan's space*
 - 2 A perturbation phase to escape from local minima (shuffling)

- The Orienteering Problem is NP-hard!
- Variable Neighborhood Search: generic metaheuristic for global optimization problems
- Given an initial plan, VNS works by chaining:
 - 1 A descent phase improving a particular aspect of the solution searching in *plan's space*
 - 2 A perturbation phase to escape from local minima (shuffling)

Plan execution

Integration of SAOP within Fire-RS

Upcoming work: "Fire front-driven" monitoring

The VNS-based algorithm does a great job

- ▶ providing a complete plan for the whole mission (> 10 min)
- doing task allocation
- refining or repairing an invalid plan

Upcoming work: "Fire front-driven" monitoring

The VNS-based algorithm does a great job

- ▶ providing a complete plan for the whole mission (> 10 min)
- doing task allocation
- refining or repairing an invalid plan

 UAVs can do better than following a sequence of oriented waypoints Upcoming work: "Fire front-driven" monitoring

The VNS-based algorithm does a great job

- ▶ providing a complete plan for the whole mission (> 10 min)
- doing task allocation
- refining or repairing an invalid plan
- UAVs can do better than following a sequence of oriented waypoints
- Design a "Follow fire front" primitive:

Give UAVs the ability of feedback on-board instead of relying solely on the global planner

Roundup

- Problem modeling:
 - Wildfire forecast
 - UAV motion models
- VNS-based observation planning

Arthur Bit-Monnot, Rafael Bailon-Ruiz, Simon Lacroix. *A Local Search Approach to Observation Planning with Multiple UAVs.* International Conference on Automated Planning and Scheduling (ICAPS), Jun 2018, Delft, Netherlands. 9p., 2018. hal-01730655

Plan execution