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Time
Wind Waves (mins) to Weather from transcripts (Forecast unless otherwise noted) or from
(m/s) (m) |Capsize? | Stable | mission reports (Skylab, ASTP)
AS 201 5.1 0.3 recovery photo estimate
AS 202 7.7 0.6 recovery photo estimate
Apollo 4 7.7 1.2 Two reports 15kts, 4ft waves w/ 8ft swell. One report 17-25kts, 8ft waves
Apollo 6 10.3 1.8 Y 1
Apollo 7 8.2 0.9 Y 12
Apollo 8 9.8 1.8 Y 6 12 kts, waves 4ft (after says 19kts, 6ft swell)
Apollo 9 4.6 2.2 Light/variable, 2-3 ft
Apollo 10 2.6 0.9 12kts, waves 5ft
Apollo 11 8.2 0.9 Y 7.6 |18kts, waves 3-6ft
Apollo 12 7.7 0.9 Y 4.5  |15kts, 3ft waves w/ 6ft swell (Ortloff/Harland says 15ft swell)
Apollo 13 5.1 1.2 10kts, waves 4ft
Apollo 14 7.7 1.2 15kts, 2ft waves@2s period with 4ft waves@3s
Apollo 15 3.4 0.9 18kts, waves approaching 6ft. Then 15kts, 4ft, Qne chute failed
Apollo 16 5.1 1.2 Y 4.5  |10kts, 3ft waves
Apollo 17 5.1 0.6 10kts, 3ft waves
Skylab 2.6 0.3 0.3m waves on 1.2m swell. 2.6m/s
Skylab 9.6 0.5 Y 3 0.5m waves. Wind 35 km/h
Skylab 8.2 0.6 Y 5 0.6m waves 2s period on 0.9m swell. 8.2 m/s
ASTP 8.7 1.1 Y 4.5 17kts. 1.1m waves
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APOLLO EXPERIENCE REPORT - . v 1
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Full-scale splashdown tests at
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DYNAMIC MODEL INVESTIGATION OF )
WATER PRESSURES AND ACCELERATIONS f
ENCOUNTERED DURING LANDINGS ‘
OF THE APOLLO SPACECRAFT
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Resurge is well-known in impact
cratering as the mechanism for
central peak formation.




2 necessary conditions for capsize :

N —

) \—

Stable
(Insufficient
energy in jet)

Stable
(Capsule sits on jet)

Capsize
(Capsule
overturned by jet)

Stable
(Capsule avoids jet)

* resurging jet must have enough energy to overturn capsule
* jet timing must be right, to catch edge of capsule



Resurge timescale
t= 2(D/g)0-°

If average V
applies, then critical
velocity is V|, ~ L/2t

In reality some correction
factor applies, since
resurge is not impulsive,
and horizontal velocity of
vehicle changes
throughout event.. To fit a
threshold speed V, for
full-scale Apollo of 5m/s
we obtain

Vt~0.65Lg5/8p1/8 m 8 Vv-l/4
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Applying the formula Vi~0-65Lgp"*m ™ V1™ 44 1/ scale Apollo, we find a
threshold speed of 2.65 m/s, which agrees nicely with Stubbs’ results. This
formula can be applied to other vehicles, and other planets/liquids.



Conclusions

Attention in splashdown has traditionally focussed on the first
milliseconds after contact. This is an analytically appealing
problem with a rich pedigree, and is when the peak deceleration is
generated.

The late stages are computationally-demanding and complex. They
are, however, critical in the stability of the vehicle.

While complex, the phenomena are deterministic. A simple
physical mechanism has been proposed, with a critical horizontal
velocity range which defines where capsize may occur. This
mechanism, curiously, does not appear to have been discussed in
the literature to date.
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