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In aircraft design, the last few decades have focused on incremental improvements to
conventional tube-and-wing designs to reduce cost, noise, and emissions. Nevertheless, the
growing expectations in terms of environmental impact for the next generation of aircraft
motivates more radical changes in the design. For unconventional aircraft configurations,
there is a need to integrate higher fidelity analysis earlier in the design process. The use of
high-fidelity tools are usually associated with a large number of design variables and con-
straints. This means we can potentially solve what we define as higher-dimensional (HD)
aerodynamic shape optimization. Therefore, these optimizations require gradient-based
algorithms to decrease the number of function calls and thus the overall computational
cost. In addition, the adjoint method is often used to accurately and efficiently compute
derivatives with respect to large numbers of design variables. However, adjoint-computed
gradients are not always available, and more important, gradient-based methods do not
ensure to converge to global optima. At the same time, new derivative-free methods have
been investigated to obtain optimized configurations at a reasonable computational cost
(so called budget in this paper) and moreover independently of the initial starting point.
The work presented in this paper focuses on the use of a new algorithm capable of tackling
complex design optimization problems through the use of an enrichment strategy approach
based on mixture of experts coupled to adaptive surrogate models. SEGOMOE means Su-
perEGO coupled to Mixture Of Experts. This is optimizer is an interesting alternative for
investigating multimodality in aerodynamic shape optimization problems, especially when
adjoint gradient computation is not available, or when the convergence of the global opti-
mum depends strongly on the initial starting point. Two aerodynamic shape optimization
test cases, proposed by the AIAA Aerodynamic Design Optimization Discussion Group
(ADODG) are considered: one with a single global minimum, and another one with sev-
eral local minima. Both problems are nonlinear constrained problems that involve a large
number of design variables. Results are compared to one of the best actual gradient-based
optimizers: SNOPT. A hybrid approach combining the advantages of both SEGOMOE
and gradient-based optimization is also proposed to reduce the number of function calls
and also to ensure the convergence toward the global optimum. Our preliminary results
show that the total number of function calls for the proposed hybrid approach is similar to
that of the gradient-based algorithm while converging to the global minimum and indepen-
dently of the chosen starting point. This new approach has huge potential for industrial
applications requiring fast and reliable optimization.
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I. Introduction

In the last decade, there has been a growing interest in improving the efficiency of vehicle design processes
through the use of multidisciplinary design optimization (MDO) numerical tools and techniques. The

European Clean Sky project1 envisions large improvements in emissions, noise reduction, and life cycle
environmental impact for the next generation of aircraft. These ambitious objectives require more than
merely incremental changes to current aircraft: they call for revolutionary modifications and the discovery
of entirely new designs. The prospect of unconventional aircraft configurations increases the importance
of aircraft MDO based on high-fidelity simulations and motivates research in new methods to optimize
coupled systems. High-fidelity simulations such as structural finite-element modeling and Computational
Fluid Dynamics (CFD) increase the value of optimization results by providing the optimizer with an accurate
prediction of the true performance of a given design. The computational cost of these analyses motivates
the development of efficient optimization algorithms that minimize the number of function calls and reduce
the turnaround time of the design cycle.

The objective of this paper is to demonstrate an efficient optimization algorithm for CFD-based aerody-
namic shape optimization that is able to handle multimodal problems. Two kinds of problems are addressed
here: one with a single global minimum, and another with several local minima. Both problems are non-
linear constrained problems that involve a large number of design variables. The proposed optimization
approach is based on sequential enrichment applied to Efficient Global Optimization (EGO)2 to handle the
constraints, using an adaptive surrogate model. EGO is a heuristic method for global optimization prob-
lems. This method provides a good trade-off between computational cost (proportional to the number of
objective and constraint function calls) and the number of iterations to reach global optimum. However,
like other gradient-free methods for global optimization, EGO suffers from the curse of dimensionality: its
performance is acceptable for lower dimensional problems, but deteriorates quickly as the dimensionality of
the design space increases. For realistic aircraft wing shape optimization problems, the required number
of design variables exceeds 2003 and, thus, trying to directly solve the problems using EGO is ruled out.
Sasena4 proposed SuperEGO as an extension of EGO to handle constraints.

The key idea in this paper is to combine Mixture of Experts (MOE) technique with specialized Kriging
models adapted to high-dimensional problems.5,6 The combination of SuperEGO4 and MOE has previously
been presented with some preliminary results on analytical functions.7 The objective of the present paper is
to benchmark the approach on more complex test cases with a much larger number of design variables and
constraints on both a priori unimodal and multimodal objective function. The final algorithm is implemented
within the NASA OpenMDAO framework .8

In Section II, we describe SEGOMOE, the proposed surrogate-based optimization technique that is
suitable for high-dimensional problems. The framework used to perform the aerodynamic shape analysis
is described in Section III. The two aerodynamic shape optimization benchmark cases, derived from cases
established by the AIAA Aerodynamic Design and Optimization Discussion Group (ADODG),9 are then
presented in Sections IV and V. The first case is the Common Research Model (CRM) wing (ADODG
Case 4) and the second is a simplified version of ADODG Case 6, which deals with multimodality in subsonic
wing design. We compare the gradient-based approaches to SEGOMOE in Sections IV-B and V-B. A hybrid
approach is also investigated that combines domain exploration with SEGOMOE and domain exploitation
with SNOPT.

II. SEGOMOE approach

Adaptive surrogate models have become more and more popular in engineering optimization problems10

The proposed method in this paper consists of coupling the SuperEGO (SEGO) algorithm4 with a mixture of
experts model (MOE) well suited to high-dimensional problems. We start by constructing the best surrogate
model by combining automatic clustering and best expert selection. Then we approach the solution iteratively
by balancing the exploration/exploitation phase. It leads to a restricted number of calls of time-consuming
high-fidelity models (so called budget).

Bayesian optimization approaches usually use a Kriging model11,12 as a substitute for high-fidelity models.
One of the advantage of the Kriging method is that it provides both analytic expression of the prediction
and also the variance of the prediction. So we can easily use Bayesian approaches. On the other hand,
estimating the hyperparameters of the Kriging correlation matrix using the maximum likelihood is time-
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consuming, especially when the number of design variables is high (>10). Indeed, the likelihood function is
multimodal and requires multiple inversions of the correlation matrix during its maximization.

A recently developed surrogate technique, called KPLS (for Kriging combined with Partial Least Squares),
is proposed to handle the large number of design variables involved in the optimization problems. It is a
combination of the Partial Least Squares (PLS) method and the Kriging model.5 The PLS method is a
well-known tool13 for high-dimensional problems that searches the direction that maximizes the variance
between the input and output variables. This is done by a projection in a smaller space spanned by the so-
called principal components. KPLS integrates the information provided by PLS into the Kriging correlation
matrix to scale the number of inputs by reducing the number of hyperparameters. The number of principal
components q, that corresponds to the number of hyperparameters for the KPLS approach, usually does not
exceed 4. Thus, this reduction of the number of hyperparameters accelerates the construction of the model
while maintaining a good accuracy with the use of PLS information.

Bouhlel et al.6 developed a variant of KPLS to improve the accuracy of high-dimensional multimodal
problems by adding a new step in the KPLS construction. By a change of variables, this technique expresses
the solution of the KPLS hyperparameters (with q dimensions) into the original space (with d dimensions),
and then uses this solution as a starting point for a gradient-based optimization of the likelihood function in
the original space. This technique, called KPLS+K, improves the likelihood solution provided by the KPLS
method by allowing more flexibility in the estimation of the hyperparameters in the original space.

In this paper, we use several surrogate models of types KPLS and KPLS+K, and consider each one of
them as a local expert that approximates a specific part of the design space. Interested readers can find
detailed information of the surrogate models available in the Surrogate Modeling Toolbox (SMT).14 We then
combine all of these local experts in an automatic way for the construction of a global surrogate model over
the whole design space, the so-called mixture of experts (MOE). A general introduction about the mixture
of experts can be found in15 and a first application with generalized linear models in.16

Based on Kriging properties to predict both the output variable and an estimate of variance, the Efficient
Global Optimization (EGO) algorithm relies on an Expected Improvement (EI) criterion accounting for the
exploration-exploitation trade-off. One major problem of using the EGO algorithm is that it cannot handle
constraints in its standard version. We have proposed some enhancements to the SEGO algorithm4 according
to three major steps:

1. Replace the Kriging model by a MOE model17,18 based either on KPLS or KPLS+K models to approx-
imate the objective function. For the constraints, we use all available surrogates (polynomial regression
models, Radial Basis Function, Kriging, KPLS, KPLS+K...) using some in-house surrogate models14

or some of the Python Scikit-Learn Toolbox19 as local experts.

2. Use the Watson and Barnes criterion20 (WB2) that gives slightly more merit to local search.

3. Find the optimum using the Jacobian calculation of the mixture of experts for the objective and the
constraints functions with an optimizer capable of considering nonlinear constraints. This optimizer
could be gradient-free method (such as COBYLA for Constrained Optimization BY Linear Approxi-
mation21) or gradient-based method (e.g., SLSQP22).

The nonlinear optimization problem to solve is:
min
x∈Rd

f(x)

s.t. c1(x) ≤ 0
...

cm(x) ≤ 0

(1)

where f(x) is the objective function, ci(x) corresponds to the ith constraint (∀i ∈ [1, . . . ,m]) where m is the
number of constraints and x ∈ Rd. We consider the objective and constraint functions as time-consuming
simulators (PDE-based) such as high-fidelity aerodynamic or aerostructural models. The proposed method
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SEGOMOE replaces the Eq. (1) by the following one:
max
x∈Rd

WB2(x)

s.t. ĉ1(x) ≤ 0
...

ĉm(x) ≤ 0

(2)

where ĉi is the prediction of the constraint ci given by the mixture of experts surrogate. The WB2 objective
criterion combines the EI criterion and the prediction f̂(x) of the objective function (relative to Eq. (1)) as
following:

WB2(x) = −f̂(x) + EI(x). (3)

We select an optimizer from the libraries SciPy,23 pyOPt24 or pyOptSparse.25 The most commonly used are
COBYLA and SLSQP.

The EI criterion considers the objective function value at x as a realization of a random variable with
a mean and a standard deviation provided by the MOE, and assesses the improvement compared with the
current best solution (please see 26,27 for more details on this criterion). As the uncertainty of the objective
MOE increases for high-dimensional problems, the EI criterion emphasizes the exploration of the surrogate
model. Therefore, we use the WB2 criterion where the additional term −f̂(x) allows a more local research
compared to EI.

Figure 1 shows a 1-dimensional example of how the EI and WB2 criterion work. The maximum of EI
function (resp. WB2) locates the next sampling point, see Figure 1-b (resp. Figure 1-c). In this 1-D example,
the enrichment point is the same, the main advantage of the WB2 criterion is that it is smoother than the
EI function since it does not return to zero at the sampled point.

(a) 1-D function. (b) EI criterion. (c) WB2 criterion.

Figure 1. The EGO enrichment for a black box function (1D function f(x) = (6x − 2)2 sin(12x − 4), x ∈ [0, 1])
with the EI and WB2 criteria. (a) The green line is the true function, the red line the predicted Kriging model
interpolating the observed data (7 blue points). (b) The EI function when only 7 points have been sampled.
(c) The WB2 function when only 7 points have been sampled seems to be smoother.

The main steps of SEGOMOE used in this paper are as follows:

1. Construct the initial DOE and build the associated MOE models relative to the objective and constraint
functions.

2. Solve the optimization problem by maximizing the WB2 criterion subject to the design constraints and
variable bounds, and propose the new enrichment point. In the original EGO algorithm,26 the mean
and the variance of the objective function are required to compute the objective criterion (WB2). In
our case, they are given in exactly the same way by the Kriging-based mixture of experts.

3. Compute the values of the objective and constraint functions at the new enrichment point.

4. Check if the new point is in the feasible domain or not, and identify inactive, active, and violated
constraints.

5. Return to Step 2 and update the DOE if the stopping criterion is not reached.
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SEGOMOE iterates until the stopping criterion is met. Due to the high computational cost of actual
simulations, it is common to impose a maximum number of function calls as the stopping criterion. Finally,
Figure 2 summarizes the SEGOMOE algorithm steps.

Construct the initial
design of experiments

(Re)build
metamodels

Solve problem (2)

Compute the en-
richment point

Stop criterion met?Stop

Update the
design of

experiments

Yes No

Figure 2. Overview of SEGOMOE algorithm.

In order to decrease the CPU time, two major improvements have been proposed concerning the updates
of the surrogate models to build at each iteration step, their number has been reduced and their computation
is done in parallel. At each iteration step, an identification of the active, respected and not-respected
constraints is performed from the outputs ci(x).

This selection is based on the distance between the constraint output (given by the solver) and the
threshold value imposed by the user in order to check if the new point is in the feasible domain (or one of
its boundaries) or not. Only the surrogate models relative to the objective function and to the active or
not-respected constraints are updated taking into account the enriched database. Concerning the respected
constraints, it is not useful to update their surrogate models at each iteration step of SEGOMOE but only
after a fixed number of enrichment iterations (every 10 iterations by default if not specified by the user).
Note that at each iteration step, the updates of the surrogate models relative to the objective function and
the selected constraints can now be performed in parallel which is very powerful when a large number of
constraints is involved.

SEGOMOE can easily be used as a global optimizer. The objective of the present paper is to illustrate
its behaviour on two specific optimization problems. In the first problem, the objective function is unimodal
(with a single global minimum), and the final solution obtained with a gradient-based optimizer such as
SNOPT28 or NLPQL29 does not depend on the starting point. For the second problem, the objective function
is multimodal and thus we use a multistart approach to reach the global optimum with the gradient-based
optimizer SNOPT. We describe these two test cases in the next sections and discuss the corresponding
results.

III. High-fidelity aerodynamic shape optimization framework

To demonstrate the capability of the SEGOMOE approach, we apply it to two aerodynamic shape
optimization problems. To perform the aerodynamic shape optimization, we use a framework that combines
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a Reynolds-averaged Navier–Stokes (RANS) CFD solver, a geometry parametrization engine, and a mesh
perturbation algorithm. The CFD solver is ADflow, which uses a second-order finite-volume scheme to solve
the compressible Euler equations, laminar Navier–Stokes, and RANS equations (steady, unsteady, and time
periodic) on overset meshes.30,31 The Spalart–Allmaras turbulence model32 is used to complete the RANS
equations. The solver combines a Runge–Kutta method for the initial iterations with a Newton–Krylov
algorithm that increases the convergence rate in the later iterations.

ADflow is especially effective when used in conjunction with gradient-based optimization because it ef-
ficiently computes accurate gradients with respect to large numbers of design variables using an adjoint
method. The adjoint method is implemented using a hybrid approach that selectively uses automatic differ-
entiation to generate the code that computes the partial derivatives in the adjoint equations.31

The geometry is parametrized using an implementation of free-form deformation (FFD),33 and the mesh
deformation is performed with an efficient analytic inverse distance method.34

The integration of ADflow with the optimization algorithms is achieved through pyOpt, a common Python
interface that facilitates the use of different optimization algorithms.24,25 This enabled us to re-use the
same Python scripts when benchmarking SEGOMOE against gradient-based optimizer. The gradient-based
optimizers we used are SNOPT,28 a sequential quadratic programming optimizer that can handle large-scale
nonlinear constrained problems, and the Non-Linear Programming by Quadratic Lagrangian (NLPQL).29

This aerodynamic shape optimization framework has been used to solve various problems3,35–38 and has
also been extended to perform aerostructural design optimization.36,39–42

IV. Twist optimization of the Common Research Model wing

A. Problem definition

As a first aerodynamic shape optimization problem, we solve a simplified version of the ADODG Case 4.9

This case consists in minimizing the drag coefficient of a wing by varying airfoil shapes and twist distributions
subject to a lift coefficient constraint. The initial wing geometry is based on NASA’s Common Research
Model (CRM) wing,3,43 which was created as a database for the purpose of validating specific applications
of CFD. The wing features a blunt trailing edge and is representative of a modern transonic commercial
transport wing, with a size similar to that of a Boeing 777.

Since this case has been solved extensively using SNOPT,3,38 we decided to use this same case to bench-
mark SEGOMOE using SNOPT as a reference. To limit the size of the optimization problem, we first remove
the airfoil shape variables which leads to 8 variables (twist only). The optimization problem can be stated
as, 

min Drag coefficient, CD × 104

w. r. t. 8 twist variables ∈ [−10, 10]

s. t. CL = 0.5

(4)

The 8 twist variables are given in degrees, and rotate the corresponding airfoil cross sections about the
trailing edge. The trailing edge line is fixed. The angle-of-attack (AoA) is set at 2.8 degrees. The volume
is constant with this formulation, since variations in twist do not change the wing thickness, so the volume
constraint specified in the ADODG Case 4 does not need to be enforced. We only retain the lift coefficient
constraint (CL = 0.5) from the original problem.

The baseline geometry of CRM wing is shown in Fig. 3. This is identical to the CRM wing, except that
all the twist variables are set to zero. We do this to verify that the optimizations are able to converge to
the optimal twist distribution when starting far away from the optimal distribution. Figure 7-a shows the
CFD solution for this baseline at the nominal design flight condition. The solution shows a strong shockwave
along the whole wing span that incurs a large drag penalty. This is not surprising because the CRM wing is
designed to have decreasing twist towards the tip and this untwisted wing is far from optimal.

B. Results

The results obtained with SEGOMOE are compared with results obtained using the gradient-based op-
timizers SNOPT and NLPQL. These gradient-based optimizers require an initial guess for the starting
configuration and the derivatives of the objective function. On the other hand, SEGOMOE performs a DOE
before allowing the optimizer to enrich the model, and therefore it does not need a starting point.
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Figure 3. CRM baseline configuration used as starting point for gradient-based optimization.

The criterion chosen for comparison is the number of function calls required to minimize the drag coeffi-
cient. SEGOMOE starts with a 9-point DOE (corresponding to the dimension of the design space d+1) and
the first step consists in finding a design point for which the constraints are satisfied. Then, the iterative
process generates feasible points while reducing the objective function.

The results of the different steps are shown in Figs. 4 and 5. The readers should notice that SEGOMOE
optimization results are unconventional since they can be decomposed in an exploration phase (left part of
the graph), then an exploitation phase (right part). These plot the objective values of the consecutive best
points calculated throughout the optimization and the sum of the constraints violation. They also show
the number of iterations required to converge, the value of the best calculated objective, and the number of
iterations it took to find the first feasible point.

Two phases can be distinguished in these plots.

1. Before a first feasible point is found: This phase is characterized by a nonzero sum of the violation of
the constraints (red line). During this phase, the consecutive best points are the ones that make this
sum decrease. Hence, the objective function of the consecutive best points is not necessarily decreasing,
and can have a lower value than the final best found point.

2. After the first feasible point is found: This phase is characterized by a sum of the violation of the
constraints that remains zero and a decreasing objective function. The two phases are separated by a
dotted vertical line with the label “first valid solution”.

As seen in Figs. 4 and 5, the optimizer is not deterministic, that is, two consecutive runs of the same
optimization under the exact same circumstances do not yield the exact same results, or at least they do
not have the same DOE and enrichment points. In this example, COBYLA algorithm with a multistart
procedure is used to maximize the WB2 enrichment criterion given by Eq. (2). Although the convergence
histories look very different, the two best objective values are very similar (10−4 relative error) and the
optimizations converged using a similar number of objective function calls.

Now let’s have a look to how the optimizer explores the design space over iteration steps. We propose
to represent the design space using a radar chart, where each direction of this chart represents a design
variable. Figure 6 displays the radar chart for the optimization with 8 twist design variables (x1, x2, . . . , x8).
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Objective function calls

Figure 4. Optimization convergence history using SEGOMOE and a 9-point DOE (Run 1). The best points
are displayed in green, and the sum of the constraint violations is displayed in red (which is zero when a
feasible point is found). Before the first feasible solution is found, the best points are those for which the sum
of the constraints violation is smaller than the previous one.

Objective function calls

Figure 5. Optimization convergence history using SEGOMOE and a 9-point DOE (Run 2). The best points
are displayed in green, the sum of the constraint violations is displayed in red (zero for feasible points). Before
the first feasible solution is found, the best points are those for which the sum of the constraints violation is
smaller than the previous one.

The DOE points are represented with black dotted lines. The iteration steps (timeline) of the enrichment
points is represented by coloring the corresponding lines from red to green. Finally, the best found point is
represented by a solid blue line.

As can be seen on Fig. 6, the optimizer explored the design space in very distinct ways, and spent some
time looking for the optimum in different areas. However, the best points found are the same and this was
the case for every SEGOMOE run. Therefore, we can conclude that the final results are consistent despite
variations in the optimization history.

The results presented above are consistent, but they provide no information about the quality of the
optimum that it found. To assess the quality of the optimal design, we then compare to the optimum found
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(a) 1st run of SEGOMOE (b) 2nd run of SEGOMOE

Figure 6. Radar charts for the two SEGOMOE optimizations (Run 1 and 2), using COBYLA algorithm to max-
imize the WB2 criterion. The timeline of the enrichment process is represented by coloring the corresponding
lines from red to green. The blue line represents the best design found.

with SNOPT.
Table 1 summarizes the performance of SNOPT, NLPQL and SEGOMOE for the CRM twist optimization

case. To get a final value close to the reference one (with a relative error of 10−6 compared to the SNOPT
value), SEGOMOE requires a few more evaluations (about 20) than SNOPT, but again no initial starting
point is required. To get a relative error of 10−3, SEGOMOE requires fewer iterations (about 30, depending
on the run) than SNOPT. This behavior is due to one of SEGOMOE’s skills: smart exploration of the
domain to propose rapidly a solution near the global optimum. Once again, we emphasize the fact that
SEGOMOE does not need the objective or constraint derivatives, or a starting point. However, SEGOMOE
can be adapted to use derivatives by using a gradient-enhanced kriging technique.44 Also, the results and
computational cost of both SNOPT and NLPQL are dependent on the starting point, and the search for a
suitable starting point can sometimes be time consuming for complex cases.

Optimization run Number of calls Best objective

SNOPT 97 232.0884

NLPQL 103 232.0993

SEGOMOE run 1 119 (10−6 rel. error) 69 (10−3 rel. error) 232.0867

SEGOMOE run 2 114 (10−6 rel. error) 71 (10−3 rel. error) 232.0884

Table 1. Performance of the various optimizers for the 8-variable twist optimization problem. The reference
objective value is the SNOPT result shown in bold and is used to compute the relative error. The number of
calls for gradient-based optimizers (SNOPT and NLPQL) include adjoint computation.

As illustrated on Fig. 7, the pressure distribution over the optimized wing is much smoother and does
not have a shockwave anymore. The optimized shapes obtained by SNOPT and SEGOMOE are very close
and lead to the same pressure distributions.
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(a) baseline (b) optimized SNOPT (c) optimized SEGOMOE.

Figure 7. Comparison of the surface pressure distributions on the CRM wing: baseline wing for SNOPT (left),
wing optimized with SNOPT (middle), wing optimized with SEGOMOE (right).

V. Multimodal wing shape optimization

A. Problem definition

This new test case is based on the ADODG Case 6 benchmark (“Multimodal Subsonic Inviscid Optimiza-
tion”).9,45 This case was devised to explore the existence of multiple local minima in aerodynamic wing
design. The baseline geometry is a rectangular wing with a chord of 1.0 m and a NACA 0012 airfoil cross-
section with a sharp trailing edge. The semispan is 3.06 m and the wing is fitted with a rounded wingtip
cap. In the full benchmark problem, the optimizer is given freedom to change twist, chord, dihedral, sweep,
span, and sectional shape variables. In the modified version used for this study, we reduced the variables
to twist and dihedral. The geometry is parameterized using the FFD approach implemented in pyGeo,33

which allows the definition of global design variables with control of sections of B-spline control points. Nine
sections are defined along the span of the wing with heavier clustering towards the tip of the wing. Twist
variables rotate eight of these sections (excluding the root section) about the quarter-chord. Likewise, the
eight dihedral variables each control the vertical displacement of one of the spanwise sections, excluding the
root section. The angle of attack can be varied to allow the optimizer to satisfy the lift constraint. The
optimization problem we solve is

min drag coefficient: CD × 104

w. r. t. 8 twist variables ∈ [−3.12, 3.12]

8 dihedral variables ∈ [−0.25, 0.25]

1 angle-of-attack ∈ [−3.0, 6.0]

s. t. CL = 0.2625

(5)

B. Results

We used two optimization approaches to obtain the results in this section.

SEGOMOE : This consists in using solely SEGOMOE as a global optimizer to assess its performance in
terms of ability to find the global optimum within a limited budget (i.e., number of calls to the CFD
solver).

Hybrid : In this approach, we use SEGOMOE as a first exploration stage and then switch to a gradient-
based optimizer, such as SNOPT. The idea is to quickly identify a design that is close to the global
minimum, and then use a gradient-based algorithm to precisely converge to that minimum.

1. SEGOMOE-only results

As for the previous use case on CRM wing, the SEGOMOE approach is compared to SNOPT on the same
test case. These gradient-based results, as well as other cases related to ADODG Case 6, are presented in
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more detail by Bons et al.45 Here we just compare the SEGOMOE results for the Euler-based twist and
dihedral optimization case, and summarize the corresponding results from Bons et al.45 for completeness.
The optimization problem was solved using SNOPT28 starting from 10 random shapes, as illustrated in
Fig. 8-a.

The optimal results are shown on Fig. 8-b. It appears that this problem does have multiple local optima
and a single global one, although the designs are very close in terms of drag value: 39.820 drag counts for
the global optimum and 40.001 drag counts for the local one. Of the 10 runs, 5 converged towards the global
optimum, which is characterized by an upward winglet. For the 5 other runs, multiple local minima were
found for shapes with a downward winglet. The radar chart in Fig. 9 provides more details on the optimal
designs with the values of the 17 design variables; we can see that all local minima differ only slightly on
twist parameters and on dihedral parameters in the inner part of the wing (the dihedral variables are denoted
as “xplane”).

(a) (b)

Figure 8. SNOPT results for wing optimization with respect to twist and dihedral variables. Multiple local
minima were found when starting from 10 randomly generated initial configurations.

All the computations converged to a constraint violation below 10−8 (10−11 for some runs) for the equality
constraint, resulting in an average number of iterations around 100, corresponding to 200 calls to the ADflow
solver (which requires an adjoint computation in addition to the flow solution). Table 2 summarizes the
reference target, in terms of best objective and computational budget achieved by the SNOPT algorithm.

Optimizer Best objective Number of calls Constraint violation

SNOPT 39.820
Mean ≈ 200 ≈ 10−09–10−11

min= 180; max =220

Table 2. Result achieved by SNOPT for a 200 function call budget, where the number of calls is the average
of 5 runs. The min and the max value of the ADFlow calls for the 5 runs are also reported.

A set of SEGOMOE computations was launched to benchmark its performance for a budget similar to
that of an average SNOPT optimization (200 calls to the CFD solver), and also to assess the robustness of
the approach. With that goal in mind, two different DOE sizes were tested:

• 3 runs for an initial 18-point DOE

• 3 runs for an initial 30-point DOE

Table 3 summarizes the performance of all SEGOMOE runs. These results should be compared with reference
value given in Table 2. These results show that, within the available budget, all SEGOMOE runs reached
objective value close to the optimal one with a constraint violation between 10−7 and 10−10. The lowest
values of objective function with SEGOMOE are reached by the optimization using an initial DOE size of
30. Nevertheless, among the runs that use the smaller initial DOE (18 points), one point is more interesting
to study as its objective value is 39.833 and its equality constraint is satisfied with a tolerance of 9.78 10−08

(which is very close to the reference one obtained with SNOPT).
Figure 10 shows the radar charts for the best configurations from the 6 trials listed in Table 3. The global

minimum obtained by SNOPT is shown in each plot in black. None of the optimizations reached the global
optimum shape, but most of them converge to a point nearby. Of the 6 resulting shapes, 5 converged to an
upward winglet as the configuration providing the best result. For the runs starting from a 18-point DOE,
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Figure 9. Reference optimal designs obtained using the SNOPT optimizer (multistart of 10 random configu-
rations). Each direction of the radar chart represents one of the 17 design variables (“twist” refers to twist
variables and “xplane” refers to dihedral variables), with the inner and outer radii limiting the design space.
The continuous black line refers to the the global optimum in the design space. The dashed lines (magenta or
blue) refer to the local optimal points.

Reference objective value given by SNOPT: 39.820

SEGOMOE run number Initial DOEs Best objective Number of calls Constraint violation

1 18 39.941 197 (18+179) 1.82× 10−7

2 18 39.859 174 (18+156) 4.49× 10−10

3 18 40.038 184 (18+166) 9.95× 10−9

1 30 39.848 167 (30+137) 4.74× 10−8

2 30 39.833 198 (30+168) 9.78× 10−8

3 30 39.867 194 (30+164) 9.62× 10−8

Table 3. SEGOMOE results, where the number of calls includes both the DOE sampling and optimization
iterations. Comparisons are made with two different DOE sizes for a fixed budget of 200 calls to the solver.
The reference value form SNOPT and the best objective value with SEGOMOE are given in bold

.

runs 1 and 2 found the same area of the design space, which was close to the SNOPT reference. On the other
hand, run 3 identified the design space where the local minima found by SNOPT are located. The shape
discrepancies between run 1, run 2, and the local exploration done by run 3, indicate that the convergence
was not achieved by these runs. One would expect that with more iterations, run 3 of SEGOMOE could
change its current exploration area to the one identified by the other runs and achieve a lower objective
function value and lower constraint violation. For the three runs starting from the larger 30-point DOE, the
global minimum region is successfully found in all trials. The final shapes seem closer to one another, and
both objective value and constraint violation are within a limited range. According to these results, a larger
DOE size is more efficient for this case when the budget of calls forces a premature termination.
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(a) 1st run SEGOMOE with 18-point
DOE

(b) 2nd run SEGOMOE with 18-point
DOE

(c) 3rd run SEGOMOE with 18-point
DOE

(d) 1st run SEGOMOE with 30-point
DOE

(e) 2nd run SEGOMOE with 30-point
DOE

(f) 3rd run SEGOMOE with 30-point
DOE

Figure 10. Radar charts for the six SEGOMOE optimizations (18- and 30-point initial DOE, for three different
runs). Each direction of the chart represents one of the 17 design variables, with the inner and outer radii
limiting the design space. The timeline of the enrichment process is represented by coloring the corresponding
lines from red to green. The blue line is the best found point from SEGOMOE and the black one is the
reference SNOPT optimal design.

Figures 11 and 12 show the geometry for each of the six configurations compared to the SNOPT global
optimum. These are consistent with the radar chart presented above, and we conclude that:

• For the SEGOMOE optimizations based on a DOE of 18 points, the run 3 best configuration (pink)
is located in a local minimum area (see Fig. 8), whereas the two other runs (red and blue) exhibit a
positive dihedral shape.

• For the SEGOMOE optimizations based on a DOE of 30 points, the three runs get closer to the global
optimal shape; the best configuration identified by SEGOMOE is shown in blue.

These investigations confirm SEGOMOE’s global exploration capabilities, since 5 out of 6 computations find
the global optimum area in a limited budget.

2. Hybrid approach: SEGOMOE followed by SNOPT

Based on the results above, we decided to take the best of both worlds and combine SEGOMOE and
SNOPT in a hybrid approach. The idea is to use SEGOMOE as a first exploration stage and then use
SNOPT starting from the SEGOMOE best point from the first stage. For this study, two different starting
points were extracted from previous SEGOMOE optimization runs. The best wings obtained after a fixed
budget of 100 calls were selected from the two best SEGOMOE combinations of options identified in the
previous paragraph—namely, SEGOMOE 30 run 1, and SEGOMOE 30 run 2. Figure 13 shows the radar
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(a) 3D view of best configurations (b) Side view of best configurations

Figure 11. Comparison of SEGOMOE best wing shapes obtained from an initial 18-point DOE with SNOPT
global optimum.

(a) 3D view of best configurations (b) Side view of best configurations

Figure 12. Comparison of SEGOMOE best wing shapes obtained from an initial 30-point DOE with SNOPT
global optimum.

chart of the two retained initial configurations. We can see that even with a limited budget in terms of CFD
calls, the wings are already close to the best shape of each run and are in the vicinity of the global optimum
given by SNOPT.

(a) 1st run (b) 2nd run

Figure 13. Radar charts corresponding to two best configurations obtained with SEGOMOE with a 30-point
DOE and a maximum budget of 100 calls.
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After the exploration stage performed by SEGOMOE, the exploitation is done with SNOPT in two
optimizations starting from the two best designs found by SEGOMOE. The performance of the hybrid
approach is compared to SNOPT-only results in Table 4.

SEGOMOE SEGOMOE SNOPT calls SNOPT Constraint Total ADflow

starting point calls (including adjoint) Objective violation calls

30-point DOE, run 1 100 129 (65+64) 39.820 4.42× 10−9 229

30-point DOE, run 2 100 123 (62+61) 39.820 −5.68× 10−9 223

Table 4. SNOPT results starting from two different SEGOMOE selected designs.

As expected, both SNOPT optimizations converged towards the global optimum that we had already
identified, using about 60 iterations. In this hybrid approach, the metric to be considered is the total number
of calls to the CFD solver (including the adjoint computations), which are listed in Table 4. For the cases
considered, the total number of calls of the hybrid approach is ranged from 220 to 230, compared to an
average of 200 for the SNOPT-only approach. However, recall that only 5 out 10 SNOPT runs converged
towards the global optimum, whereas, with the hybrid approach, we can run the procedure only once and
ensure convergence to the global optimum. To assess the robustness of this hybrid approach, more numerical
experiments should be performed to check if using a well-chosen starting point from SEGOMOE ensures
the SNOPT convergence towards the global minimum. A compromise between the allocated budget for
SEGOMOE and for SNOPT should also be investigated to reduce the total number of calls and achieve a
fast and reliable optimization strategy.

VI. Conclusion

In order to create a breakthrough in aircraft design, researchers need to integrate more accurate data from
computer simulation of higher fidelity at the very beginning of the design process. Thus we have developed an
original method so called SEGOMOE to obtain optimized configurations at a reasonable computational cost.
This approach can tackle complex design optimization problems through the use of an adaptive surrogate
modeling approach based on Kriging. The results prove that SEGOMOE is a promising algorithm for
solving expensive high-dimensional constrained optimization. The first test case (wing aerodynamic shape
optimization case with 8 design variables) demonstrated the efficiency of our approach in locating the global
minimum using a limited number of function calls. Then we also propose a second set of results using the
ADODG Case 6 benchmark to identify the different local minima. SEGOMOE succeed in obtaining fast
and reliable solution. Within a similar budget of function calls, the optimal global minimum was found to
be very close from the SNOPT reference solution. SEGOMOE seems very interesting for locating the global
minima zone under constrained budget. Further works will focus on adding the multi-point approach46 for
the EI enrichment process and thus perform parallel computations.

Finally the proposed hybrid approach can combine the advantages of SEGOMOE and SNOPT method.
SEGOMOE is capable of locating the global optimum area very quickly. SNOPT excels in finding the best
solution when its starting point is in the general vicinity of the global optimum. From those conclusions,
when it is possible, i.e., when objective function derivatives are available, the best optimization strategy is
to let SEGOMOE find a good starting point for SNOPT. The preliminary results for this hybrid approach
show a total number of function calls similar to the SNOPT-only optimization. This new approach could be
well adapted to industrial needs requiring fast and reliable optimization, especially for innovation in aircraft
design where researchers want to use optimizers capable of large exploration of the design space.

VII. Acknowledgments

We would like to thank the following internship students for their work on the SEGOMOE optimizer:
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