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ABSTRACT 
A Montgolfiere, or hot air balloon, is an attractive 

mobile platform for carrying scientific instruments on a 
wide-ranging exploration of Titan’s lower atmosphere 
and surface regions. The key to successful 
implementation of the concept is an accurate prediction 
of buoyancy across the wide range of flight conditions 
expected on a long duration mission in the Titan 
environment. This paper reports on recent results from 
modeling thermo-fluid behavior of a Titan 
Montgolfiere using computational fluid dynamics 
(CFD) simulations. Many CFD simulations were 
performed, grouped into four categories that explored 
different aspects of the overall problem. First, 
Reynolds-averaged Navier-Stokes (RANS) techniques 
were used to model 1 meter diameter single and double 
wall balloons that were tested at cryogenic 
temperatures (90K) on Earth. Good agreement was 
obtained between the measured and simulated 
buoyancy for both balloons. Second, RANS models 
were used to simulate full scale (10 meter) double-wall 
balloon designs either as closed spheres or with 
realistic geometrical features such as a teardrop shape 
and an inlet hole at the bottom of the balloon. Although 
there were small differences between the closed sphere 
and realistic geometry computations, both sets of 
results showed that the double-wall design was less 
effective at increasing buoyancy than estimates based 
on engineering heat transfer correlations for concentric 
heated spheres held at uniform temperatures. This 
discrepancy led to the third group of simulations that 
focused on the thermo-fluid behavior of an idealized 
gap using direct and large-eddy simulation techniques 
that directly resolve the unsteady, turbulent convective 
flows for a Rayleigh (Ra) number range of 104 < Ra < 
109. Comparing these results to RANS simulations and 

correlations suggests that the engineering correlations 
do not provide accurate heat transfer estimates for the 
turbulent flow in thinner gaps under turbulent flow 
conditions. The fourth set of CFD simulations 
quantified the change in buoyancy performance due to 
forced external convection, modeling those flight 
conditions for a balloon with changing altitude. The 
paper concludes with a short parametric assessment 
that maps out the payload mass versus float altitude 
versus balloon size design space for full scale Titan 
Montgolfiere double-walled balloons using the heat 
transfer performance quantified by the recent CFD 
results. The basic conclusion is that the balloon 
diameter must grow by 10% to 20% to compensate for 
the poorer buoyancy performance indicated by the 
recent CFD simulations as compared to previous 
estimates based on correlations. 
 

1. INTRODUCTION 
 

There has been a tremendous amount of work done 
in recent years on the mission design and technology 
development aspects of a future balloon mission at 
Titan. Recent review articles by Lorenz [1], Dorrington 
[2] and Hall [3] summarize the balloon technology 
development activities and discuss the many different 
kinds of balloons and missions that are possible. The 
importance of continued Titan balloon technology 
development for a future mission was endorsed 
recently in the 2013-2023 Decadal Survey for 
Planetary Science. [4] 

A Montgolfiere, or hot air, balloon is a leading 
concept for Titan. Figure 1 shows an artist’s concept of 
such a balloon proposed for the Titan Saturn Systems 
Mission (TSSM) in 2008. [5]  This Montgolfiere 
balloon would create buoyancy by heating up the 
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ambient atmosphere inside the balloon with waste heat 
from a radioisotope power source (RPS). The RPS 
would be located inside the balloon with ambient 
atmosphere entering through an opening in the bottom 
of the balloon. The buoyancy, and hence altitude, of 
the balloon would be controlled by a valve located on 
top of the balloon: when opened, that valve allows 
warm air to escape, decreasing buoyancy and causing 
the balloon to descend. When the valve is closed, the 
internal gas temperature and buoyancy increase, 
causing the balloon to ascend. A great advantage of 
such an RPS-powered Montgolfiere balloon is that it 
can potentially can fly for very long times, on the order 
of years, due to the long-lived RPS heat source and the 
insensitivity to small pinhole defects in the balloon 
envelope given that the balloon is already open to the 
atmosphere. 

A key technical challenge of Titan Montgolfiere 
balloons is ensuring sufficient buoyancy generation 
under all flight conditions despite relatively small 
amounts of available thermal power. Terrestrial hot air 
balloons typically use propane burners to generate up 
to 100 kW of heat. Conversely, a Titan Montgolfiere 
balloon would have at most approximately 2 kW of 
heat by using a single multi-mission radioisotope 
thermal generator (MMRTG). Less heat than that 
would be available if the Advanced Stirling 
Radioisotope Generator (ASRG) were used instead of 
the MMRTG. It is plausible that 2 kW or less of 
thermal power will suffice at Titan because the 85-90 
K cryogenic environmental temperature will almost 
completely suppress the heat loss due to thermal 
radiation, which is the primary loss mechanism on 
Earth. Heat losses can be further reduced by 
implementing a double-wall balloon design in which 
the air-filled gap between the walls serves as an 
insulating layer. The TSSM mission was based on this 
design [5]. 

Prior Titan Montgolfiere thermal designs, 
including TSSM, utilized engineering correlation 
equations based on laboratory experiments of small 
scale spheres (e.g. Scanlan, [6]). The performance 
estimates for such a design were necessarily 
approximate and with unknown errors given the lack of 
experimental data or more sophisticated models with 
which to compare. Full scale cryogenic testing is not 
expected to be possible given the lack of test facilities 
anywhere in the world that can accommodate a 10+ 
meter diameter balloon. Therefore, an alternative 
strategy was adopted by the authors to obtain improved 
performance estimates through use of computational 
fluid dynamics (CFD) simulations validated with small 
scale (1 meter diameter) cryogenic test data.  

The results presented here build upon preliminary 
work published by some of the authors in the past two 
years. [7,8]  The current work consists of four main 
areas of new research: 

1. Reynolds-averaged Navier-Stokes (RANS) 
techniques were used to model 1 meter 
diameter single and double wall balloons that 
were tested at cryogenic temperatures (90 K) 
on Earth. 

2. RANS models were used to simulate full scale 
(10 meter) double-wall balloon designs either 
as closed spheres or with realistic geometrical 
features such as a teardrop shape and an inlet 
hole at the bottom of the balloon. 

3. An idealized gap was simulated using direct 
and large-eddy simulation (LES) techniques to 
address discrepancies in the performance 
estimate between RANS and engineering 
correlations for gap heat transfer. 

4. The effect of external forced convection was 
simulated to mimic balloon vertical motions. 

The final section of the paper applies the CFD 
results to the problem of full scale Titan 
Montgolfiere balloon design and generates design 
curves of payload versus balloon size for different 
heating levels. 
 
 
 
 
 

 

 
Fig. 1: Artist’s concept of a double-wall Titan 
Montgolfiere balloon for the TSSM mission. [5]  
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2. COMPUTATIONAL FLUID DYNAMICS 
RESULTS 

 

2.1. Scaled Experimental and CFD analysis 
In order to validate CFD models for the Titan 

Montgolfiere, experiments were performed on a scaled 
1 m balloon in the Wyle Labs cryogenic facility, 
covering a range of ambient temperatures from 90-180 
K. Both single- and double-walled balloons were 
tested.  The double-walled balloon had a 5 cm gap 
between the inner and outer walls, which gives a ratio 
of inner to outer diameter of ��/�� � 	0.9. The 
balloons were made buoyant by heating the gas with 
an electrical resistance heater, for which voltage and 
current to the heater were measured to determine the 
power input to the balloon. Thermocouples were 
embedded in the walls to measure skin temperature at 
several locations from crown to base and a load cell 
measured the lift of the balloon. A steel cylindrical 
shell was placed around the balloon within the 
cryogenic chamber to provide a quiescent atmosphere 
around the balloon during testing. A more detailed 
description of the experimental setup is provided in 
Feldman et al, [8].  Numerical simulations were 
performed at scale using commercial software 
Ansys12. [9]  Turbulence was modeled via the 
Reynolds Averaged Navier Stokes (RANS) approach 
with a standard k−ε turbulence model and wall 
functions. The radiation modeling was switched off 
since, at this range of cryogenic temperatures, 
radiation effects are negligibly small. [8] 

A comparison between experimental and 
numerical net buoyancy values for both single- and 
double-walled balloons is shown in Fig 2. There is 
consistently good agreement between simulation and 
experiment for both single- and double-walled 
configurations. The CFD generally predicts more 
buoyancy, and the differences increase as the ambient 
temperature is reduced (and the heat transfer rate 
increases), reaching a maximum of about 10% for 
single- and 15% for double-walled balloon at the 
external far field temperature �� = 90 K. The 
overpredictions may be related to an imprecise 
modeling of the balloon’s shape: the experimental 
balloons have a sphere-on-cone geometry while in the 
numerical simulations the balloons were idealized as a 
perfect sphere. Moreover, slight side-to-side 
movement of the balloons was observed during the 
experiment, indicative of small atmosphere currents 
not completely eliminated by the experimental setup.  

The experimental and CFD results revealed an 
interesting effect of the small-scale geometry, namely 
a strong dependence of buoyancy on the temperature-
dependent properties of the gas. Temperatures inside 
the small balloon can be as much as 200 K higher than 
ambient due to the high heat input values necessary to 
a achieve a substantial buoyancy force at small scale.  

 

 
 
Fig. 2: Experimental and numerical buoyancy 
values:  a) double-walled balloon; b) single- walled 
balloon. 

 
The increasing viscosity and conductivity of the gas 
with temperature causes a significant increase in the 
heat transfer coefficient. Moreover, the temperature 
distribution varies strongly along the balloon surface 
(cold bottom/hot top). At large scale, the temperature 
differences are much smaller and the resulting 
temperature distribution is relatively more uniform. 
Thus there is a danger in extrapolating the 
experimental results to full scale. [8]  

As discussed previously, the strong insulating 
effect of the gap in the double-walled design is critical 
to reduce the required heat input for a full-scale 
Montgolfiere at a given payload mass. In system-level 
models of the balloon heat transfer, the engineering 
correlation of Scanlan [6] is typically used to estimate 
the effective conductivity of the gap. This correlation 
is for concentric spheres with a uniform temperature 
difference. It is therefore of interest to compare the 
inferred effective conductivity of the gap from the 
CFD calculations to the value predicted by the 
correlation. Such a comparison is provided in Fig. 3, 
where the effective conductivity ratio, 
���/
, is 

(a) 

(b) 
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plotted versus a modified Rayleigh number ��∗ �
��/�� , where �� is the Rayleigh number based on 
the gap width  and gap temperature difference, 

�� � ��, i.e. �� � ��	
��
���
�� .  In processing the 

simulation data for the plot, average surface 
temperature were used. Values of 
���/
 obtained 
from simulations with different heat inputs, different 
ambient temperatures, and different gap widths 
collapse reasonably well on a power-law  dependence 
in ��∗, but the slope and interception differ 
significantly from the Scanlan correlation. The larger 
value of effective conductivity in the CFD results 
suggests that estimates of the insulating effect of the 
gap based on Scanlan will be overly optimistic.  

One of the possible reasons for the discrepancy is 
the violation of basic assumptions inherent in the 
correlation, namely the constant temperature of the 
spherical shell boundaries. However, preliminary 
numerical simulations of the full-scale balloon on 
Titan, where the temperature differences from ambient 
are much smaller and more evenly distributed, show 
that a considerable discrepancy persists when 
comparing the effective conductivity measured in the 
simulations to the correlation. In order to resolve the 
discrepancy, we performed simulations of idealized 
gaps between concentric constant-temperature spheres 
across a wide range of conditions and with different 
modeling techniques. These results are presented in 
Section 2.3. 

 
 

 
Fig. 3: Gap effective conductivity versus modified  
Ra* number. The symbols represent values 
inferred from the simulations of 1 m scaled 
balloons with a variety of heat inputs, ambient 
temperatures, and gap thicknesses. 

 
 
 

2.2. Realistic balloon shapes, experimental 
rebuilding 

 
So far, it was assumed that the 1 m diameter 

double wall balloon from the cryogenic experiment can 
be modeled as  two concentric spheres. This is 
consistent with the geometry of the heat transfer 
correlations used in the 1D engineering models. The 
effect of modeling a real balloon shape is now 
considered for the CFD rebuilding and results will be 
compared to CFD rebuilding on equivalent spheres. 
The gap width between the inner and outer wall is kept 
at 0.05 m. In an additional study, the heat source 
location is varied within the balloon along the 
symmetry axis to check for the buoyancy sensitivity. 

The flow conditions selected for this study 
correspond to the double wall, high heating case: Pa = 
101200 Pa, Ta = 90 K, Qheater = 550 W and U∞ = 0 m/s. 
For the geometry, the spherical balloon has a 1 m 
diameter, an opening of 0.1 m and a gap width of 5 cm. 

The real shape is obtained by digitizing a 
photograph taken during the experiment from which a 
few geometrical points have been reconstructed. From 
these points, a B-spline is constructed to ensure first 
and second order continuity; this defines the outer skin. 
The inner wall shape is obtained through a homothetic 
scaling using the area centroid as the origin. A view 
presenting the real balloon shape compared to the 
idealized spherical shape is showed in Fig. 4. The 
numerically constructed real balloon shape is compared 
to a photograph of the actual balloon taken during the 
Earth cryogenic experiment in Fig. 5. 

 
 

 
Fig. 4: comparison of real (left) and spherical 
balloon shapes (right), CFD grids. 
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Fig. 5: Comparison of numerically rebuilt (left) and 
cryogenic tests real balloon. 

 
For the heater, a set of 3 locations is selected: from 

a very low location (baseline results), to a central 
location, to a high location (near the top). It is expected 
to get the highest buoyancy for the heater located the 
lowest as more inner volume is heated. The heater 
locations are shown in Fig. 66. The flow topology from 
a dynamic view point is unchanged when comparing 
the real shape to the spherical shape. However, the 
thermal plume length does necessarily shorten as the 
heater location is moved upwards towards the top of 
the balloon.  

From the thermal field results (Fig. 7), lowering 
the heater location shows a more homogeneous flow 
(less stratified) and higher overall average temperature 
(more buoyancy). With the lowest heat location, one 
gets close to a 1D thermal flow within the balloon 
enclosure; the engineering convection correlations are 
based on that assumption. For the highest located 
heater, the vertical thermal gradient is the highest and 
the gap shows a thermal plume near the centerline 
leading to more heat loss (less buoyancy). As the 
heater is placed higher in the balloon, the thermal flow 
has two vertical nodes that are separated by the heater. 
The thermal field is presented in Fig. 7 for the three 
different heater locations. 

 
 
 

 
Fig. 6: heater location, from left to right: lowest 
(baseline), central, highest. 

 

 

 
Fig. 7: thermal field on a shaped balloon with 
different heat source locations. 

 
The buoyancy values for the real shape as a 

function of heater location for 550 W heat input are 
presented in Table 1. It is interesting to note that the 
volume to gap ratio does not change much. The inner 
volume is 0.342 m3, the gap volume is 0.125 m3 and 
the total volume is 0.467 m3. The inner volume 
represents 73% of the total volume and the gap to total 
volume ratio is 27%. From the highest to the lowest 
heater location, the buoyancy varies by 15%. 

 
Table 1 : Buoyancy values for the real shape double 
wall with the different contributions as a function of 
heater location. The spherical buoyancy reference 
value is 761 [g]. 
 
Heater 
location 

Buoyant mass in grams [g] 
Overall Inner volume Gap volume 
mbuoy mbuoy % mbuoy % 

 
Lowest 739 577.8 78.19% 161.2 21.81% 
Central 717 561.0 78.24% 156.0 21.76% 
Highest 628 500.9 79.76% 127.1 20.24% 

 
Comparing the spherical shape buoyancy 

(mbuoy=761 g) with the baseline real shape buoyancy 
(mbuoy=739 g), one may note that the real shape 
produces slightly less buoyancy (~3%). Nevertheless, 
the values are close one another demonstrating that the 
spherical assumption used for the engineering 
correlations is valid. 
 
 

2.3. Idealized gap heat transfer analysis 
 

As discussed in the Section 2.1, CFD simulations 
of the scaled double-walled balloons showed 
significantly larger values of the gap effective 
conductivity than would be predicted based on the 
Scanlan correlation. [6]  In order to investigate the 
discrepancy further, we now simulate the isolated, ideal 
gap between concentric spheres with an imposed 
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uniform temperature on each surface and a relatively 
small temperature differences between surfaces. This 
eliminates any uncertainty as to the effect of non-
uniform wall temperatures and temperature-dependent 
property variations.  Assuming constant gas properties 
the heat transfer, and specifically the effective gap 
conductivity, ����/�	, is solely determined by the �� 
and ��	numbers, and the ratio of inner-to-outer sphere 
diameter	� = ��/��. According to Scanlan, the 
effective conductivity collapses to a universal curve 
when the diameter ratio and �� are combined into 
��∗ = ��	/��. In what follows, we hold �� = 0.71 
constant. We consider a range of values of �� and � 
that span the expected values of 	��∗ for a full-scale 
Titan balloon design. 

Moreover, to reduce uncertainties associated 
with turbulence modeling, we performed direct 
numerical simulation (DNS) and large-eddy 
simulation (LES) of the turbulent convective flow in 
the gap. DNS refers to a fully three-dimensional 
simulation where all the relevant (unsteady) scales of 
motion are directly resolved on the grid, and solved in 
parallel on a large computer cluster. The required grid 
size for DNS increases dramatically with ��, and it is 
only feasible to use DNS for relatively small-scale 
gaps. To reach higher ��, we turn to LES, which is a 
technique that resolves directly only the largest scales 
of turbulent motion and supplies a model to capture 
the dissipation associated with unresolved, small 
scales. We implemented both DNS and LES in 
OpenFoam. [10] For LES, we used a one-equation 
eddy viscosity model (a variation of the approach 
developed by Germano et al., [11]); further details will 
be given in forthcoming publications. 

Figure 8 compares data for k���/�	we obtained 
with DNS and LES to those obtained with the k − ε 
RANS model discussed in the Section 2.1, and to the 
Scanlan correlation. To provide further check of the  

 
Fig. 8: Effective conductivity of the ideal gap versus 
modified 
�∗number. 
 

the RANS results, we used both Ansys12 [9] and 
OpenFoam for the RANS simulations for several of 
the operating points, and obtained similar results. 
Figure 8, together with analysis of the resulting flow 
fields, reveals several interesting features of the gap 
convection. The first observation is that the values of 
Ra∗	at which instability and transition to turbulence 
occur vary dramatically with gap ratio	φ. For 
relatively low φ, the DNS simulations at low to 
moderate Ra∗		resulted in laminar or quasi-laminar, 
unsteady flow, and relatively close agreement with the 
Scanlan correlation. The unsteady quasi-laminar flows 
consist of convection cells in the form of travelling 
waves and falling vortices. Turbulent flows were 
obtained for the thickest gap (φ = 0.5) only when 
��∗ 	> 	10�. The thin gaps, on the other hand, 
transitioned at progressively smaller values of ��∗. 
The hot gas rising on the inner sphere and the cold gas 
falling on the outer sphere form a strong shear layer 
instability in the middle of the gap. 

The plot shows a clear departure from Scanlan 
once the gaps are turbulent.  Looking at the thin gaps, 
and particularly the series of DNS and LES 
calculations for �	 = 	0.9, we see a similar intercept 
but higher slope than Scanlan. We found that at 
��∗ = 	10	, the �	 = 	0.9 gap is only marginally 
turbulent, whereas it appears that transition is 
essentially complete by ��∗ = 	10
. The DNS and 
LES simulations at ��∗ = 	10
  are in very close 
agreement, which serves as a validation of the LES 
methodology. 

We now turn to the RANS results. RANS 
modeling of the fully turbulent flow is challenging 
because the very thin boundary layers cannot be 
resolved on the coarse grid, and so-called wall 
functions must be used. However, such wall functions 
are only appropriate in the higher �� number regime; 
when RANS is used at lower values of ��∗, the wall 
model must be modified or switched off entirely. We 
find that this can introduce significant uncertainties 
and thus we restrict the RANS results here to the very 
high values of ��∗, where we can verify the correct 
wall-model implementation. With these caveats, 
however, we do see reasonable agreement between 
LES and RANS for �	 = 	0.9 at ��∗ = 	10�, and, 
taken together, the LES and RANS results for �	 =
	0.9 collapse very well to a power-law behavior. 
Finally, consider the RANS results for thin gaps with 
varying values of � in Figure 8. Here we observe a 
significant scatter with apparently higher slopes for the 
highest values of φ. In addition to under predicting the 
effective conductivity, it appears that Scanlan’s 
modified Rayleigh number does not scale-out the gap 
diameter ratio for the turbulent case with thin gaps. 

To summarize, the simulation results obtained 
with RANS, LES, and DNS confirm higher gap 
effective conductivities (lower insulating effect) than 
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predicted by the Scanlan correlation when the flow is 
fully turbulent.  Looking at the original data Scanlan 
used to develop the correlation, we see no 
experimental data for thin gaps with high values of 
��∗; what data does exist at high ��∗ were for thicker 
gaps  and, as we  have  seen here, such gaps are 
laminar to much higher ��∗. Two avenues we are 
therefore pursuing for future research are (i) to develop 
a more reliable empirical formula to reliably estimate 
the gap effective conductivity under conditions 
relevant to the Titan Montgolfiere, and (ii) extend the 
RANS modeling now to full-scale balloons, while 
maintaining careful control over potential grid and 
modeling errors associated with the thin turbulent 
boundary layers in the gap. 

 

2.4. Buoyancy performance with forced external 
convection for Titan flights 

 
It is important to quantify the heat losses due to 

forced convection when the balloon is in motion. 
Vertical motion with respect to the atmosphere is most 
likely and will occur both during the initial inflation 
and heat-up of the balloon upon arrival and during 
commanded altitude changes during the science 
mission itself. These vertical velocities will be small 
(few meters/sec) due to the weak gravity and large 
inertia of the balloon. Nevertheless, some additional 
heat loss will occur due to the forced convection 
outside the balloon and it is necessary to quantify this. 

In this section we consider a full scale 10 m 
diameter double-wall balloon with a 0.2 m gap and a 
RPS to heat the inner volume. The system total dry 
mass is specified to be 200 kg. 

The standard engineering model for the external 
free (natural) convection on sphere is the Campo 
model. [12] In this model, the Nusselt number is a 
direct function of the Rayleigh number: 

 
Campo (Ra>1.5 x 108): 
 

Nu��� = 0.10��0.340 (1) 
 
From the CFD results, one may integrate in space 

the wall quantities to obtain the integrated wall 
temperature and heat flux. This integration yields 
overall 1D values; from the wall heat flux qext and 
external wall temperature Tw,ext, one looks for an 
expression of the form: 

 
Nu��� = θ���Ra�.��� (2) 

 
where θext is a coefficient to be found. 

 
A set of CFD computations was done using varying 
heating power: QRTG = 325, 434, 868, 1305, 1740 [W] 

for the shaped Titan balloon with a ceiling flight at 8 
km. An example for the flow field obtained with a 1 
m/s external flow field at 8 km altitude is presented in 
Fig. 9. 
 

 
 
Fig. 9: Velocity flow field for the 1 m/s forced 
descent with low RTG heating (1305 W). 
 
Parameter matching the CFD results to an equation of 
the form in Eq. (2) gives:  

 
Nu��� = 0.08Ra�.��� (3) 

 
It can be seen that the model for the Nusselt 

number as a function of Rayleigh obtained from the 
CFD is very close to the Campo model for spheres 
from the literature (within 20%). The difference may 
be attributed to the difference in shapes. This confirms 
that the CFD computations are realistic and consistent 
at least for the external flow part. 

To compute the forced convection for a Titan 
Montgolfiere balloon, a set of computations with 
external velocities at a constant altitude of h=8 km 
were performed. The velocities ranged from 0 to 1.0 
m/s with steps of 0.25 m/s, which is a representative 
velocity range for the expected balloon vertical motion. 

The total Nusselt number usual formulation is a 
mixture between the free and the forced convection. 
Once can write: 
 

Nu���
� = Nu	
��

� + Nu	�
���
�  (4) 

 
For the forced convection part, it is common to use 

an expression based on the Reynolds number. The 
standard formulation is: 

 
Nu	�
��� = θ	�
���. Re (5) 

 
There are two coefficients that must be found: on 

the one hand the power m, on the other hand the 
scaling θforced. This is done using computational results. 
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The heat transfer rate (Nusselt number) depends 
on the Reynolds number. For the laminar range, the 
widely accepted McAdams [13] relationship is used. 
For the higher Reynolds number turbulent regime, an 
empirical scaling factor is employed according to 
Carlson and Horn Error! Reference source not 
found.]. The standard forced convection model used 
for the Titan balloons is then: 
 

Nu	�
���,���. = 0.37	Re�.��, Re < 2. 10�

Nu	�
���,��
�. = 0.74	Re�.��, Re > 2. 10� (6) 

 
From the computations with external velocities, 

one may obtain the total Nusselt number. The total 
number is derived from the wall heat flux on the 
external wall (w,ext) and the temperature gradient 
between the ambient (a) and the external wall. These 
values are computed using integration from the CFD 
results. Using the external balloon diameter (dext) and 
the ambient fluid conductivity (λext), the total Nusselt 
number writes: 

 

Nu��� = q�,���
∇T�,���� . d���

λ�  (7) 

 
Inserting Eq. (5) with Eq. (7) into Eq. (3), one may 

compute the forced convection part from the CFD 
integrated results. In the end, the forced convection 
writes: 

 
θ	�
���. Re = �� q�,���

∇T�,���� . d���
λ� �� + �0.08. Ra�.�������/� (8) 

 
Using a mixing coefficient n=3 (corresponding to 

spheres e.g., [14]), the θforced coefficient is computed 
based on several assumptions of the exponent m. Since 
we are looking for a forced convection law that is valid 
for the entire velocity range, the choice of m will be 
based on a constant θforced value. 

From the integrated CFD results, the coefficients 
are computed and presented in Table 2. 
 
Table 2: forced convection model coefficients. 
U 
[m/s] 

m =0.60 
θforced 

m =0.70 
θforced 

m =0.75 
θforced 

0.25 0.85 0.08 0.10 
0.50 0.95 0.13 0.10 
1.00 1.12 0.23 0.11 
 

It is seen that with an m power of 0.75, the θforced 
values do not change much. Therefore, one can 
propose a forced convection law valid for Titan balloon 
in the U < 1 m/s range with the following coefficients: 
 (9) 

Nu	�
���,���. = 0.37. Re�.��, Re < 2. 10�

Nu	�
���,��
�. = 0.10. Re�.��, Re > 2. 10� 
This model may seem to differ largely from the 

forced convection model in Eq. (6); however a 
comparison for a complete descent and ceiling flight 
shows that both trajectories are close one another. The 
main difference lies in the undershoot caused by a 
higher descent velocities due to the larger convective 
losses with the present forced convection model. The 
descent and ceiling flight is presented in Fig. 10. The 
flight corresponds to a 10 m diameter double wall 
balloon with a 0.20 m gap spacing, a QRTG=1740 [W] 
heat source and a total dry mass of 200 [kg]. 

 

 
Fig. 10: Comparison of forced convection models on 
the complete trajectory showing strong similarities 
in descent velocities. The legend indicates the 
Nusselt law in the turbulent regime. 
 

It can be noted that the change in slope for the 
Nusselt number from the laminar (m=0.37) to the 
turbulent (m=0.75) regimes agrees with the general 
laws of convection. One may cite the work on heated 
cylinders [15,16,17] in which the Nusselt formulations 
follow a very similar trend to the proposed formulation 
for a Titan balloon in Eq. (9). 

Finally, compared to Earth, one should note that 
because of the atmospheric profile, the external forced 
heat transfer on the 10 m Titan balloon will almost 
always be turbulent, even for small external velocities, 
see Fig. 1. 
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Fig. 11: Reynolds number during Titan descent 
from injection (40km, -5m/s) to ceiling (8km) for a 
10m balloon. 
 

3. PARAMETRIC ASSESSMENT OF FULL 
SCALE BALLOON DESIGN 

 
The CFD results presented in the previous section 

lay the foundation for estimating the performance of 
full scale, double-wall Montgolfiere balloons at Titan. 
The cryogenic test results provide a good validation for 
the RANS modeling approach (Section 2.1), the 
sphere-on-cone geometry calculations show that the 
perfect sphere approximation adds only a ~3% error 
(Section 2.2) and the RANS, DNS and LES 
simulations of spherical gaps support the conclusion 
that the engineering 1D correlations (Scanlan, Ref. 6) 
do not adequately cover the turbulent flow regime 
(Section 2.3 and Fig. 3). The accumulated knowledge 
from these results and the prior CFD studies [7, 8] have 
been synthesized into a simplified lumped-mass model 
for the balloon thermodynamic behavior based on a 
spherical geometry.  This new model is functionally 
equivalent to that used to design the balloon for TSSM 
[Error! Bookmark not defined.], but with updated 
parameters to reflect the recent CFD results. The 
specific heat transfer equations used are those 
presented in Feldman et al [8], Equations 7 through 13, 
with two modifications: 

• The radiative heat transfer is set to zero 
(Feldman et al, [8] Eq. 9) since it contributes 
little heat flux at 90 K. 

• An additional scaling factor of 2.8 is added to 
the right hand side of Feldman et al [8] 
Equation 8 to account for the reduced thermal 
insulation performance of the gap as per the 
results of Fig. 3 above. 

The resulting equations were coded up and solved 
numerically in a trade study that looked at the design 
tradeoff between balloon size and payload mass as a 
function of equilibrium float altitude for different 
heating levels. The trade study specified the following 
parameters: 

• Double-wall balloon with a 0.1 m gap 
between the inner and outer walls. 

• 0.05 kg/m2 average areal density of the 
balloon material, including seams and 
structural reinforcements. 

• 100% nitrogen atmosphere composition with 
real gas properties as a function of 
temperature and pressure. 

• Three different heating levels of 630, 1088 
and 1740 W. The highest value corresponds to 
the heat output of an MMRTG after 15 years, 
and the lowest heat output corresponds to 2 
ASRGs after 15 years. 

• Three different balloon diameters of 12, 13 
and 14 m. 

The results are shown in Fig. 12 along with a data 
point for the TSSM design. The TSSM balloon was 
10.6 m in diameter, but the new calculation shows that 
a 12 m balloon is now required to provide the ~220 kg 
of non-balloon lift mass with the same heating value of 
1740 W. This 45% increase in the balloon volume 
directly results from the effect of decreased gap 
insulation for the new calculation as compared to the 
original TSSM model. 

It can be seen that there is a relatively weak effect 
in the increase in non-balloon lift mass as a function of 
increasing balloon diameter: each 1 m diameter 
increase adds approximately 25 kg of payload at 1740 
W but only 10 kg of payload at 630 W. There is no 
hard upper limit to the allowable size of a Titan 
Montgolfiere balloon, but anything larger than 15 or 16 
m will encounter difficulties with mass and storage 
volume inside the aeroshell. Even at that size, it is clear 
that the 630 W heating level will not provide 200+ kg 
of non-balloon lift mass typical of TSSM-like flagship 
missions. Such payloads are achievable with the 1088 
W case at ~15 m diameter, while the 1740 W of the 
MMRTG can clearly support these payload masses and 
more. 

It should be noted that ongoing work with LES 
simulations for the gap heat transfer may result in 
modifications to these results that are based on the 
generally less accurate RANS simulations used to 
construct Fig. 3. Until such time, however, Fig. 12 
provides a good estimate for the design space of Titan 
Montgolfiere balloons. 
 
 

4. CONCLUSIONS 
 
Results have been presented for validated CFD 
simulations of Titan Montgolfiere (hot air) balloons. It 
was discovered that the gap in a double-wall balloon 
design provides less thermal insulation than were 
previously expected based on engineering correlations 
derived from small scale laboratory experiments with 
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heated metal spheres. Calculations with a more realistic 
sphere-on-cone geometry and open hole at the bottom 
of the balloon showed only a small 3% reduction in 
estimated buoyancy as compared to perfect spheres. 
The addition of forced convection effects had only a 
small effect on balloon performance: the limiting case 
of a newly deployed balloon heating up for the first 
time in the atmosphere was able to arrest its descent 
with a 2 km trajectory undershoot before settling out at 
the equilibrium float altitude of 8 km. Finally, design 
curves were presented for the full scale Titan 
Montgolfiere balloon that incorporate the latest CFD 
results. The decreased insulation performance of the 
gap translates into the need for larger balloons than 
previously expected: the example of the TSSM mission 
showed a balloon diameter increase from 10.6 to 12 m 
diameter for the same heating level and payload mass. 
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