

9th International Planetary Probe Workshop, Toulouse, France, 16th-22nd June 2012

THERMAL DESIGN OF LUNAR PENETRATOR Samuel Nouvellon; Dr Lucy Berthoud; William Rickwood

This study investigates the thermal design of a lunar penetrator. A network of penetrators could provide useful seismological data about the Moon to scientists. However, the science is limited by the thermal sub-system, as the temperatures experienced by the penetrator can be as low as 35 K at the lunar south pole. With the seismology tests aiming to run for up to a year, this study aims to research for how long the penetrator could survive without the use of a Radioisotope Heater Unit (RHU).

Moon penetrator

nar environment

- Length: 0.56 m; Diameter: 0.12 m
- Total Mass: 13 kg; Payload mass: 7 kg
- Power source: primary 500W.hr battery
- Deceleration on impact: 15,000 g
- Operating temperature: -40°C to +50°C
- No Radioisotope Heater Unit (RHU)
- Lunar South Pole, polar cold trap (e.g. Shackleton Crater)
- Depth: > 0.8 m
- Regolith temperature: 35 K
- No sunlight
- Conductivity of regolith: 0.015 W/m.K

Thermal subsystem design

Vacuum flask design: the payload casing is held away from outer shell to minimise conduction.

- Struts: S-grade glass fibre
- Radiation insulation: gold or beryllium coating
- 5mm of Aerogel insulation inside payload casing

Technology selection

Retractable rear strut, based on Shape Memory Alloy (SMA) technology, which severs a conduction path when the temperature falls below a pre-set level.

- Microheaters powered by battery, which compensate for the heat flow out of the payload.

TiNi Aerospace: P5-STD retractable strut

Conclusion

The lifespan is sufficient to conduct heat flow and composition studies, but not the 1-year seismology experiments required for MoonLITE mission. RHU may need to be considered.

200 100 300 700 800 400 500 600 Time (hrs)

With special thanks to Dr L. Berthoud and William Rickwood (UoB), Dr C Chaloner and Nick Cavan at SEA Ltd, Yannick Melameka at ESATAN-TMS Support, and TiNi Aerospace.

