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Outline 
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• Temperature 

• Plug Design 
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• Pressure  
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Introduction 

•  Purpose is to give a condensed overview of the current practice for 

measurement of TPS surface and in-situ basic quantities during ground 

testing and reentry. 
 

•  Basic methods will be discussed, and examples given to demonstrate 

our current uncertainties.  
 

•  References for further reading 
 

•  Emphasis is on temperature, pressure, and recession. 

•  Radiation methods are briefly discussed. 

•There are many other methods that will not be covered in this talk. 
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Benefits of TPS Instrumentation 

• TPS Design Verification 

– Ensure that flight design and thermal margin determination are correct 

– Requires data from several flights to build up a statistical database 

– Identify areas with excess or reduced margin due to insufficient data during design 

• Operational Vehicle ISHM / Forensics 

– Pre-entry assessment of overall TPS “health”  

– Real time analysis of TPS performance for detection and root cause determination of off-
nominal performance events 

• TPS/Aerothermal Modeling Tool Validation 

– Data from multiple flights will provide much better statistical basis for uncertainty 
quantification and reduction of: surface and in-depth material response as well as incident 
aerothermodynamics predictions 

• Design and Performance Data for Second Generation Heatshield 

– Reassessment of overall TPS margin may result in a lighter, more efficient 2nd generation ISS-
return heatshield 

– Performance data from ISS return missions will have some benefit for Lunar return as well, but 
will not reduce design margin until data are returned from lunar return missions 
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The Details 

 

• TPS Margins & Tool Validation 

– Can a transitional aerothermal database be employed on the HS and/or BS? 

– Are the liens on thickness due to mechanical erosion justified? 

– Does the TPS material coke, thus improving overall performance? 
 

• Detailed Design Feature Verification 

– Does the gap design maintain integrity and adequately protect bondline during a range of entry 
conditions?  

– Is the compression pad design, including possible downstream recession mitigation, performing 
as desired? 

How will instrumentation on the flight vehicle be an improvement over a dedicated 
flight test? 

• Data volume and statistics. A single flight can never exercise or validate 
reliability estimates, which require that the vehicle operate in off-nominal 
conditions 
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Mission Instrumentation 
TPS Mass 
Fraction 

Observations Benefits 

Apollo 2 & 3 
36 Pressure Sensors 
35 Calorimeters 

13.7% 
- Reliable data (early in the 
trajectory) at orbital entry velocities 

- Provided data to improve 
reliability of entry capsule 

Apollo 4 & 6 

17 Pressure Sensors 
23 Calorimeters 
Stagnation and offset 
radiometers 
Heat shield recovered and 
sectioned 

13.7% 

- Reliable data (early in the 
trajectory) at super – orbital (trans – 
Lunar) entry velocities 
-  Reliable radiation data 
- In-depth characterization of 
ablating TPS material – lack of 
recession due to “coking” 

-Flight data available basis 
for quantifying uncertainty 
in afterbody heating 
predictions for lifting entry 
- Allowed for optimizing 
heat shield mass 
performance 

Fire II 

3 forebody calorimeters 
Stagnation and offset 
radiometers 
12 Afterbody thermocouples 
1 Afterbody pressure sensor 
Rear-facing calorimeter 

- Flight 
Experiment - 
Heat Shield 
Ejection 

- Surface total heating during 
portion of reentry 
-Total and spectrally resolved 
incident radiation to surface 
- Afterbody heating for entire entry 
- Confirmed lack of neck radiation at 
super-orbital velocities in air 

-Provides validation data for 
aerothermal/air radiation 
models 
- Helps quantify uncertainty 
in afterbody heating 
predictions 
 

Pioneer Venus 
(4 probes) 

2 Thermocouples in each 
heat shield 

12.9% 
- Massive ablation in the shoulder 
region (as was the case with Galileo) 

- Provided data for design 
of TPS in the shoulder 
region 

June 2012 

What Has Been Measured on NASA Flights 
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Mission Instrumentation 
TPS Mass 
Fraction 

Observations Benefits 

PAET 

-Forebody pressure and heat 
transfer 
- Thermocouple in TPS near 
shoulder 
- Narrow – band radiometers 

13.7% (FB) 
3.5% (AB) 

- Spectrally-resolved radiation over 
several discrete regions 

-Validating data for 
radiation band models 
- Data for improvement of 
heating predictions 

RAM-C 
-Microwave 
receiver/transmitter 
- Langmuir probes 

Flight 
Experiment 

-Electron number density and 
temperature in flight 
- Quantification of radio blackout – 
cause and effect 

- Validation of CFD models 

Viking I & II 
-2 Backshell thermocouples 
- Afterbody pressure sensors 
– limited data 

~3.2% -None 

-Provided basis for Mars 
Pathfinder TPS design 
- Provided confirmatory 
data for CFD – afterbody 
pressure 

Galileo 
-Forebody recession sensors 
-Afterbody thermocouples 

45% (FB) 
5% (AB) 

-Largest heat flux and heat load of 
all planetary missions 
- Successful demonstration of the 
ARAD sensor – recession data 
- Lower than expected recession in 
the stagnation region 
- Larger than expected shoulder 
recession 

Provides the basis for 
design of heat shields for 
gas giant entries 
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Mission Instrumentation 
TPS Mass 
Fraction 

Observations Benefits 

Space Shuttle 
(STS 1 – 4) 

-Pressure and heat transfer 
sensors (wind and lee side) 
- Accelerometers and 
gyroscopes 

~16% 

-Global and control surface 
aerodynamics 
- Demonstration of real gas effects 
on vehicle aerodynamics 

- Provides data for 
validation of CFD analysis 
tools 

Mars Pathfinder 
-9 in-depth thermocouples in 
TPS 
- 3 resistance thermometers 

6.2% (FB) 
2% (AB) 

-6 functional TC’s including only on 
the afterbody 
- 2 functional RTD’s 

- Provided a rationale for 
MER afterbody heat shield 
optimization 

MER - None 
8.0% (FB) 
7.8% (AB) 

- Heat shield visually inspected by 
rover 

-None 

Stardust - None ~22% 
- Heat shield recovered and 
inspected 
- Recession and char measured 

-TBD 

MSL 
(in < two months!) 

- 7 Heat shield thermal plugs  
- 7 forebody pressure sensors 

-Entry Aug 5, 2012 
- Other talks at IPPW 

Orion EFT-1 

- 19 Heat shield thermal plugs 
- 15 Aerothermal plugs 
- 9 Forebody pressure sensors 
- 2 Forebody radiometers 
- Afterbody thermocouples 

-Launch 2014 
- Orbital reentry 

Orion EM-1 - Similar to EFT-1 
-Launch ~2017 
- Lunar reentry velocity 

June 2012 

What Has Been Measured on NASA Flights 
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NASA Galileo Jupiter Probe 
Recession Sensor 

Analysis of Galileo Probe 
Heatshield Ablation and Temperature Data,  
Milos, et. al,  Journal of Spacecraft & Rockets 1999 
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Heat Shield Recession Sensor 
ARAD Construction 

• Three coaxial conductive elements:  Pt-W winding;  Nickel ribbon;  graphite core 

• Kapton/epoxy provides a tenacious, electrically conductive char  

• Measures a char zone -  following a ~700 C isotherm 

• Uncertainty of ~ +/- 0.2 mm - based on current source uncertainty of ~10 mV 
(0.91mm for Galileo) 

• Flight heritage for carbon-phenolic TPS 

 

 

ARAD sensitive

part

assemble base

1 mm

0.5 mm

Assembly Base 

Sensing Element 
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HEAT* Sensor 
(*Hollow aErothermal Ablation Tracking) 

• The HEAT sensor is a resistance 
measurement based sensor that 
measures the depth and rate of an 
isotherm as it moves through the 
thickness of the heat shield material 
during entry 

• Utilizes a dual winding of 0.001-in.  dia. 
platinum wire wrapped around a 
polyimide tube 

• A core of the acreage TPS is inserted into 
the HEAT to reduce the sensor’s 
disturbance to the local material 

• AIAA-2008-1219 and AIAA-2011-3955  
papers provide more details 

Welded junction 
TPS core 

Welded Extension Lead Wires 
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Thermocouple Application: 
Uncertainty 
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• Reversible Effects 

– Magnetic Fields:  reentry 

– Elastic Strain 

– Pressure:  reentry 

• Irreversible Effects 

– Plastic Strain 

– Metallurgical phase change 

– Transmutation:  out-gassing  

– Chemical Reaction: with TPS 
atmospheric elements 
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Conventional Temperature Sensors (RTD) 

Platinum Resistance Thermometers (PRT) 

• 4 wire device, 2 to measure, 2 to bring 
known current 

• Platinum wire resistance changes with 
temperature, measure voltage drop across 
this resistance given a known current input 

 
Example PRT: ceramic wire wound 

Platinum is linear +/- 1.2% from 260 to 815 C 

Error Sources 

• Strain of surface 

• Heating of RTD due to current flow 

through the element 

• Transmutation of element 
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Sheathed Probe Overview 

• Paul Beckman Company  (PBC) heritage 

• Ames SMART sensor (Sheathed Miniature 
Aerothermal Reentry Thermocouple) 

• Fine wire at 0.0005-0.0008” dia. vs. 0.003-
0.020” conventional wire dia. 

– Faster response time to temperature 

• Fine wire junction 0.003 – 0.004” dia. 

• Double Bore Quartz tube 0.004” dia. 

• Sheath 0.008” dia. vs. conventional 0.020” 
dia. 

REF: Paul Beckman Company Internal Report, “Millisecond Response Thermocouples 
Basic Theory.”  
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Benefits 

Design Feature Implication 

Thermoelement fine wire diameters 
between 0.0005-in and 0.001-in 

• Response time constants on the order of 
tenths of a millisecond 

Quartz tube (0.004-in outer diameter) • Provides electrical insulation 
• Wires remain slack inside the quartz for 

strain relief 
• No need for ceramic powder filling 

Metal sheath (0.008-in outer diameter) 
– Stainless steel or tantalum 

 

• Provides resistance to corrosion 
• Several different probe tip configurations 

may be implemented 
• Can be bent 90  for installation into a TPS 

sensor plug  

• Completed probe is one modular unit 
with “plug-n-play” characteristics once 
lead wires are terminated. 
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Near surface Type K compared with “SMART” Type-K 
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TPS Thermal Plugs:  Standard Practice 

TPS plug: two TCs at 0.1 and 0.3-in from OML 

- 3 in-depth TCs 
- Alignment feature 
- Consolidated harness 

3M 2216 

Alumina 

Thermocouple 

Alumina tubes 

Mars Science Laboratory 

Multi Purpose Crew Vehicle 
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Heat Flux Instrumentation 

FIRE II 
NASA TM X-1319 

June 2012 23 
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Fire/Apollo Radiometers 

• Fire I and II: Three beryllium layers, which also 
functioned as calorimeter, jettisoning outer layers as 
time progresses. 

– Sensitivities of the thermopiles were on the 
order of 15 to 20 mV/(W/cm 2) 

– the low mass of the receiver provided a time 
constant of about 10 msec. 

• Apollo 4 and 6: Hole and radiometer in ablating TPS. 

– Produced mixed result with a clogged port 

– Needed to perform post-flight model test to 
evaluate errors by TPS. 

– Port size speculated  from illustration is Φ0.27 
in. at OML 

– The Apollo pressure port design had Φ0.25 in. 
size 

Source:  
“RADIATIVE HEATING RESULTS FROM THE FIRE 11 FLIGHT EXPERIMENT AT A REENTRY VELOCITY OF 11.4 KILOMETERS PER SECOND, NASA-Tk X-1402 
“RADIATIVE HEATING TO THE APOLLO COMMAND MODULE ENGINEERING PREDICTION AND FLIGHT MEASUREMENT NASA TM X-58091 

Fire I and II 

Apollo 
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Radiometer Arc-jet Model 

• The radiometer sensor measures radiative heat flux from the shock 

layer during atmospheric reentry 

TPS Material 

Carrier Structure 

Mounting Fixture,  

Φ3.0  in.  

Fiber mount 

adaptor 

- Medtherm, 22025-XX, 

radiometer sensor 

- Thermopile based with 

absorption coating on 

copper body 

- Thermopile design has 

flight heritage 
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Radiometer Sensor and Fiber Mount 

• Medtherm Corp.  22023 - series 

– thermopile on copper body 

– Sensing surface is coated with absorbing paint 

– Different configuration provides different sensitivity and 
time constant 

• 9 to 15 mV per 10 W/cm2 of hemispherical incident 
WITHOUT fiber  

• 50 to 150 msec to 63% step change. 

– -04-4 is chosen for high sensitivity 

-XX 
Output  (mV) at 10 W/cm2 Hemispherical 

Incident (without optical train) 
Time constant 

63 % 
Time constant 

99% 

-01 11.76 0.056 sec 0.7 sec 

-02 16.97 0.099 sec 2.4 sec 

-03 11.68 0.087 sec 0.25 sec 

-04-3 8.79 0.151 sec 1.20 sec 

[-04-4] 20.77 0.153 sec 1.19 sec 

[-04-5] 11.50 0.136 sec 1.03 sec 

Medtherm, SMA 
Fiber mount adaptor 

[] indicates unit not at ARC as of 04/23/2012 

June 2012 

Medtherm Thermopile 
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Optical probe:  Set-up and Design 

O-ring  
seals 

fr
o

n
t 

ca
p

 

half opening  
angle 5o 

Sapphire 
 window 

entrance  
aperture 

electronic  
circuit board 

50 m  
pinhole 

thermopile 

Radiometer/Spectrometer Probe 

• Sensor and electronics inside the probe body 

• Detection through a Dexter Research thermopile sensor ST120-
comp (two thermopiles, one shielded from radiation for 
temperature compensation) 

• Customized electronic board (signal amplification x 60) 

• Designed with respect to possible application in flight 

• Second probe with optical fiber for spectrometer 

• Major contributions from arc-discharge 
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Pressure Sensors 

Manufacturer TAVIS Taber 

Industries 

Kulite Columbia Research 

Laboratories, Inc. 

Honeywell 

Sensor Type Variable 

reluctance 

Bonded 

Strain 

Gage 

Piezoresistive Piezoelectric micromachined silicon chip 

with piezoresistive strain 

gauges 

Measurement 

Range 

0-1/0-2400 

kPa 

0-14 kPa 0–35 kPa to 0–

7000 kPa 

0.10 x 10
-4

 to 70 kPa 10 kPa to 3500 kPa 

depending on model 

System Mass 450 g 287 g 227 g 225 g 150 g 

Vibration 

Limit 

20 g 30 g 100 g max. 100 g max. 1500 g max 

Operating 

Temperature 

-53 to  

+93 C 

-54 to 

+121 C 

Si diaphragm 

(-55 to +482 C) 

-23 to +260 C -40 to +85 C 
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Pressure Sensors for Aeroshell Forebody 

Shuttle Pressure Orifice 
NASA TM 4219 

June 2012 

Design Issues / Considerations 

• TPS Penetration 
– Small penetration not a problem if flow does not penetrate structure 

    many tests with missing cells in honeycomb of TPS,  

    missing tiles in Shuttle TPS, etc (B. Laub) 

– TPS melt could flow into hole – use tube/sleeve through TPS 

– TPS recession - tube/sleeve to recede faster than TPS 

– Tube/sleeve material burning, melting must not block hole 

• Thermal Analysis  
– Conduction through penetration and tubing to sensor 

• Material Selection 
– Sleeve for TPS penetration – non-porous and  

– ablates faster than surrounding TPS 

• Mass and space constraints between payload and aeroshell 
structure 

• Testing requirements 
– Arc Jet Tests – no. of tests depends on range of heat fluxes and 

pressures, configuration alternatives 
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Pressure Sensors for Aeroshell Forebody 

TPS 

Structure – honeycomb 

 & carbon fiber facesheets 

0.020” ID tube 

•Taber Industries, Model 2403SAT 

–MER carrier s/c, Hubble, ISS, commercial satellites 

–Dimensions: 3-1/2” x 1-1/4” dia (89 mm x 32 mm dia) 

–Pressure accuracy & range: ±0.25% FS static, ±1.5% FS with temperature error band),  

–available for 0-2 thru 0-20k psi 

•Tavis Corporation, Model P1 

–Shuttle, ISS, Delta, Atlas, Viking backshell 

–Dimensions: 2.9” x 1.0” dia (74 mm x 25 mm dia) 

–Pressure accuracy & range: ±0.5% FS static, ±2.0% FS  with temperature error band), 

available for 0-1 thru 0-350 psi  
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Fiber Bragg Gratings 

June 2012 

• Distributed Bragg reflector  
– Constructed in a short segment of optical fiber that reflects particular wavelengths of 

light and transmits all others 

– Achieved by creating a periodic variation in the refractive index of the fiber core 

• Can be used to measure strain or temperature (or both) 

• By adjusting frequencies many sensors multiplexed on one fiber path 
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Optical Fiber Properties 

• Silica fiber survives to 1100°C; Sapphire to 
2000°C 

• Standard UV-written gratings in silica fiber 
survives to 500°C 

• Special gratings can survive to 800 - 1000°C 

• Work in progress at NASA Dryden and 
Intelligent Fiber Optic Systems (IFOS) 
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For Further Reading 

• Measurement Systems: Application and Design, E.O. Doebelin, McGraw-Hill, 1983 

• Guelhan, A., Burkard, E., et al, “Comparative Heat Flux Measurements on Standard Models in Plasma Facilities”, 

AIAA Paper No. 2005-3324, June 2005 

• Cauchon, Dona L., “Radiative Heating Results From the FIRE II Flight Experiment at a Reentry Velocity of 11.4 KM 

per Second”, NASA TM X-1402, 1967 

• Slocumb Jr., T.H., “Project Fire Flight II Afterbody Temperatures and Pressures at 11.35 KM per Second”, NASA TM 

X-1319, 1966 

• Lee, D.B., Goodrich, W.D., “The Aerothermodynamic Environment of the Apollo Command Module During 

Superorbital Entry”, NASA TN D-6792,  April 1972 
• Milos, Journal of Spacecraft and Rockets 34, 705-713 (1997) 
• Planetary Mission Entry Vehicles Quick Reference Guide, v1, NASA Ames, 2003 
• Gardon, R., ‘‘An Instrument for the Direct Measurement of Intense Thermal Radiation’’, Rev. Sci. Instrum., 24, No. 5, 

pp. 366–370, 1953 
• Fields, R.A., “Flight Vehicle Thermal Testing with Infrared Lamps”, NASA TM 4336, 1992 
• Marschall, J., Squire, T., Huynh, L., Chen, Y.K., Bull, J., “Analysis Approaches for Temperature Measurements from the 

SHARP-B2 Flight Experiment”, SHARP Documentation A9FP-9901-XD03 NASA Ames Research Center, 1999 
• Manual On The Use Of Thermocouples in Temperature Measurements, 4th Edition, ASTM Manual Series:  MNL 12, 

American Society for Testing and Materials, Philadelphia, PA, 1993. 
• Hartman, G.J., Neuner, G.J., “Thermal and Heat Flow Instrumentation for the Space Shuttle Thermal Protection 

System”,  ISA 
• Wakefield, R.M., Pitts, W.C., “Analysis of the Heat-Shield Experiment on the Pioneer-Venus Entry Probes”, AIAA Paper 

No. 80-1494, July 1980 
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June 2012 

Backup 
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IHF Arc-jet Facility 

+ add air 

 

–  60MW constricted arc-heated plasma wind tunnel  
    for heat shield material test and qualification  

–  Pressures from 1 to 9 atm, stagnation pressures from 0.01 to over 1 atm 

–  Enthalpy levels from 7 to 47 MJ/kg, heat fluxes from 5 to >6000 kW/m2 

–  Interchangeable conical nozzles with exit diameters ranging from 152 mm (6”) to 1 m (41”), 

–  Stagnation, free jet wedge, swept cylinder, or flat panel with semi-elliptic nozzle 
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SMART* Sensor Design 
(*Sheathed Miniature Aerothermal Reentry Thermocouple) 

A

B
C

E

H
I

J

K

L
G

D

KEY

A Front Ferrule

B Back Collar

C 3M 1838 Epoxy over 
Ceramabond 569 Cement 
covering welded area

D Transition area of fine wire 
wrapped and welded to lead 
wire

E 3M 1838 Epoxy over teflon tube 
and back face of back collar

F Teflon covered lead wire

G & L Sheath

H Boron Nitride V 

I Junction

J Fine wire

K Double bore quartz tubeF

Body
Length

Land Length

Probe 
Length

• Fine thermoelement wire sizes as small 
as 0.0005-in dia. 

• 0.004-in dia. quartz tube serves as an 
electrical insulator 

• 0.008-in O.D. metal sheath for protection 
from corrosion 

A

B
C

E

H
I

J

K

L
G

D

KEY

A Front Ferrule

B Back Collar

C 3M 1838 Epoxy over 
Ceramabond 569 Cement 
covering welded area

D Transition area of fine wire 
wrapped and welded to lead 
wire

E 3M 1838 Epoxy over teflon tube 
and back face of back collar

F Teflon covered lead wire

G & L Sheath

H Boron Nitride V 

I Junction

J Fine wire

K Double bore quartz tubeF

Body
Length

Land Length

Probe 
Length
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Radiation Instruments 

Radiation Flight Data Sources: 

• Fire I&II (Radiometers, Spectrometers) 
• Apollo AS-201,AS-202, 4, 6 (Radiometers) 
• PAET (Spectrometers) 
• Shuttle (Radiometer) 
• BSUV 1 & 2 (Spectrometers) 
• DEBI (Spectrometers) 
• Other DoD Payloads (primarily Spectrometers) 

FIRE II 
NASA TM X-1402 
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Application to TPS ArcJet Models 
PICA Model 
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Run 7: TCs and Heat sensors produced useful data 
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TC-2 Near surface Type K compared with “Smart” Type-K 
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