Ground Impact Study

Eléments bibliographiques & campagne expérimentale

Fabien Coussa, Julien Berthe
ONERA DMAS

Philippe Beillas, François Bermond
IFSTTAR

Remerciements à Parrot

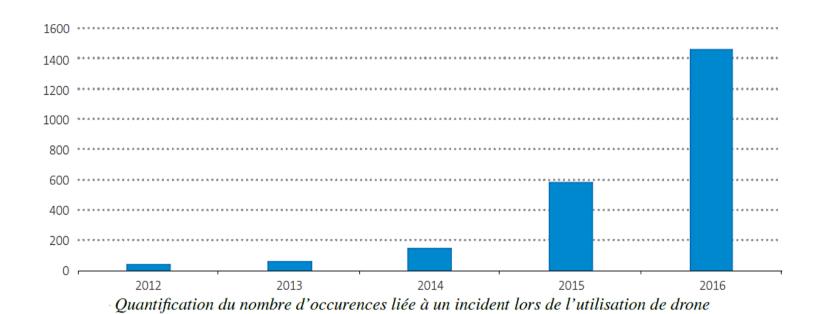
Henry de Plinval – directeur du programme drones

SOMMAIRE

- Contexte
- ➤ L'étude GIS
 - Objectifs et démarche
 - > Etat de l'art expérimental
 - > Critères de sévérité biomécanique
 - Campagne expérimentale

Contexte - UAS et sUAS

- (a) Quadricoptère
- (b) Voilure fixe
- (c) Nano-quadricoptère
- (d) Hybride

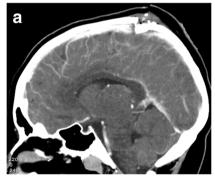

	Configuration quadricoptère	Configuration voilure fixe	Configuration nano-quadricoptère	Configuration hybride
Unités (2015)	887 755	17 698	8 110	2 771
Unités (horizon 2020)	3 830 073	48 365	57 721	75 837
Marché (2014) (m US\$)	663	62	1	/
Marché (horizon 2020) (m US\$)	4 934	272	/	385

→ Différences notables entre les deux configuration majeures :

- Quadricoptere: 250 m 1000 m d'altitude / 20 min d'endurance pour un vent de 10 m/s
- Voilure fixe: 250 m 7500 m d'altitude / 60 min d'endurance pour un vent de 15 m/s

Contexte – Faits divers accidentels

Accidents mortels uniquement liés à l'utilisation de drones semi-professionnels


- → 80 % des accidents non létaux ⇔ masse UAS entre 1 et 3 kg
- → 96,7 % des accidents ⇔ Configuration quadri-rotors

Contexte – Faits divers accidentels

Années	Profils	Causes	Conséquences
2013	19 ans	Perte de contrôle opérateur	Décès (décapitation)
2013	Adulte	Collision avec immeuble	Contusions mineures
2014	Adulte	Perte de contrôle opérateur	Contusions mineures
2015	Nourrisson 18 mois	Collision avec arbre	Enucléation
2017	13 ans	Accident lors d'une course	Fracture du crane

- Masse du drone : entre 500 et 800 g
- Impact au niveau du vertex
 - → Perte de connaissance + fracture

- → Aucun cas <u>létal strictement</u> lié à l'impact de drones de la catégorie C1
- → Inquiétude de la communauté chirurgicale : Although small, these drones can reach speeds over 100 mph and deliver a force sufficient to cause bodily injuries. Forces between 14.1 to 68.5 J, which can be produced by a 500-g drone traveling approximately 17 to 37 mph, are enough to fracture adult human skulls in cadaveric studies

GIS: OBJECTIFS

OBJECTIFS

Evaluer le potentiel létal d'un impact de drones de 900 g

Etablir une base de données expérimentales

- Maîtrise de l'énergie d'impact par le drone
- Maîtrise des équipements de mesures
- Comparaison et analyse multi-critères

DEMARCHE

- Etat de l'art expérimental Identifier les sources de variabilité
 - → Définir le protocole des premiers cas tests
 - → Réaliser et analyser la campagne d'impacts

A ce jour :

4 organismes ont réalisé des campagnes dédiées à l'impact de drones sur être-humains (+ Ohio State dans le cadre d'un work-shop non-publié)

		Protocoles	Equipements	Analyse/Critère
ORGANISMES	NIAR / UAH			
	Politecnico di Torino			
	Virginia Polytechnic			
	ATMRI Singapour			

A ce jour :

4 organismes ont réalisé des campagnes dédiées à l'impact de drones sur être-humains (+ Ohio State dans le cadre d'un work-shop non-publié)

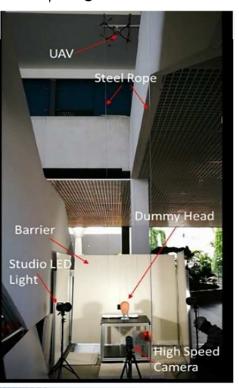
		Protocoles	Equipements	Analyse/Critère
ORGANISMES	NIAR / UAH	Drones du commerce		
	Politecnico di Torino	Drones « home-made »		
	Virginia Polytechnic	Drones du commerce		
	ATMRI Singapour	Drones « home-made »		

L'étude de la sévérité liée à l'impact de drone : 4 études seulement ...

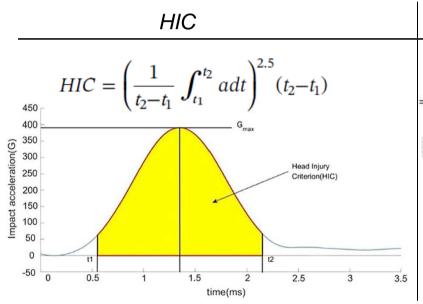
MARUAH

JIR CHILL CHILC

POLITECNICO
POLITECNICO



ATMRADOUT


... Dont les résultats peuvent être analysés suivant de multiples critères ... (issus des domaines mécaniques, biomécaniques ou des standards du secteur automobile)

		Protocoles	Equipements	Analyse/Critère
	NIAR / UAH	Drones du commerce (Phantom 3)	ATD HIII	E _{imp}
		Impact frontal/vertical sur puit de chute	Aucune information sur les systèmes d'acquisition	HIC ₁₅ / AIS g
NES	Politecnico di Torino	Quadri-rotors / Aile fixe « home-made »	ATD HIII	HIC ₃₆
ORGANISMES		Rampe de lancement	Système d'acquisition non renseignés	Fxyz /Mxyz
	Virginia Polytechnic	Drones du commerce (Phantom 3, Inspire, S1000)	ATD HIII	HIC ₁₅ / AIS,
		Impact frontal piloté Impact vertical chute libre	Système d'acquisition renseignés	Fx, N _{ij} g
	ATMRI Singapour	Quadri-rotors « home-made »	ATD HIII	E _{imp}
		Chute libre guidée	Système d'acquisition non renseignés	HIĊ ₁₅ / AIS

ANALYSE / CRITERES

• HIC/AIS vs. Critères énergétiques

Sévérité d'un impact ⇔ Les deux critères les plus utilisés

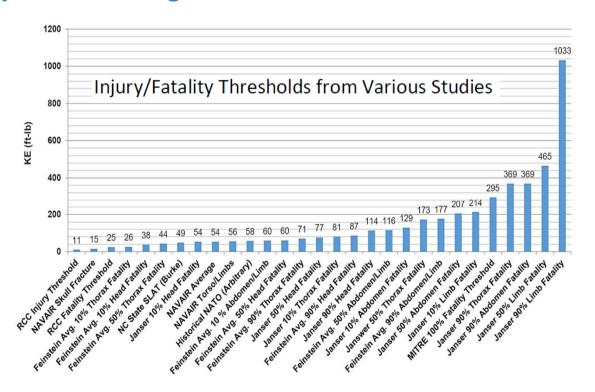
Abbreviated Injury Scale

AIS-Code	Blessure	Exemple	Probabilité de mort
1	Mineure	Lacération superficielle	0%
2	Modérée	Fracture mineure du crane	1-2%
3	Sérieuse	Fracture majeure du crane	8-10%
4	Sévère	Fracture mettant en danger de mort	5-50%
5	Critique	Ouverture avec perte de tissu	5-50%
6	Insurmontable	Mort	100%

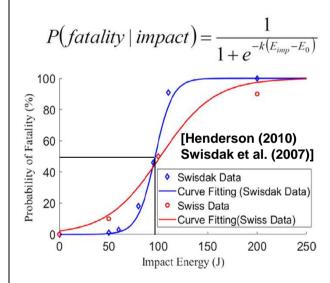
Classification standardisée pour une blessure à la tête suivant l'AIS

Standard issu des crash-tests automobiles

Classification anatomiquement fondée



ANALYSE / CRITERES


HIC/AIS vs. <u>Critères énergétiques</u>

$$E_{imp} = \frac{1}{2}mv^2 \iff F_g = mg, F_d = \frac{1}{2}c_DA\rho_A v_{rel}^2$$

L'énergie d'impact reste fortement couplée au coefficient de frottement qui reste une grandeur délicate à évaluer

Seuil d'énergie d'impact critique 🖨 difficulté d'aboutir à un consensus

E_{imp} = 80 J (Critère FAA et EASA) correspondrait à une probabilité de 50% de décès en cas d'impact

ANALYSE / CRITERES

... Et qui amène à une comparaison/évaluation de la sévérité délicate.

	NIAR / UAH 12 m / 1,2 kg	Politecnico Di Torino	Virginia Polytechnic	ATMRI Singapour
E_{imp}	105 J	156 J		122 J
HIC ₁₅	40	2988	12	693
P AIS 2/3	0 %		0 %	0 %
g	70		32	121
_ F	3500 N	6900 N	1936 N	

BILAN		Protocoles	Equipements	Analyse/Critère
	NIAR / UAH	Drones du commerce (Phantom 3)	ATD HIII	E _{imp} , HIC ₁₅ , AIS, g
		Impact frontal/vertical sur puit de chute	Aucune information sur les systèmes d'acquisition	Conclusion de l'étude : Dangerosité peu probable
/ES	Politecnico	Quadri-rotors / Aile fixe « home-made »	ATD HIII	HIC ₃₆ , Fxyz, Mxyz
ORGANISMES	di Torino	Rampe de lancement	Système d'acquisition non renseignés	Conclusion de l'étude : Dangerosité fort probable
	Virginia Polytechnic	Drones du commerce (Phantom 3, Inspire, S1000)	ATD HIII	HIC ₁₅ , AIS, Fx, N _{ij} , g
		Impact frontal piloté Impact vertical chute libre	Système d'acquisition renseignés	Conclusion de l'étude : Dangerosité peu probable
	ATMRI Singapour	Quadri-rotors	ATD HIII	E _{imp,} HIC ₁₅ , g, AIS
		« home-made »	Custàma d'assujaitis:	Conclusion de l'étude :
		Chute libre guidée	Système d'acquisition non renseignés	Dangerosité fort probable (m > 1,3 kg / Alt > 7 m) (m > 250 g / Alt > 60 m)

Les conclusions issues des études réalisées à l'aide de drones factices (designs et matériaux peu représentatifs de ceux du commerce) peuvent être questionnables

Conclusions

- → Protocoles expérimentaux peu répétables et/ou reproductibles
 - → De grandes variabilités dans les données
 - → Manque d'informations concernant l'acquisition et post-traitement des données
 - → Peu d'informations relatives à la maîtrise de l'impact i.e. de l'énergie transmise maximale
- → Grande variabilité des protocoles et des critères
 - → Bases de données difficilement comparable
 - → Evaluation de la dangerosité fortement dépendante des critères employés
- → Campagnes avec drones < 1 kg quasi-inexistante
- → Campagnes sur configuration aile-fixe quasi-inexistante

GIS: DEFINITION DE LA CAMPAGNE EXPERIMENTALE

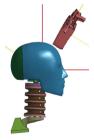
Caractéristique de la campagne - IFSTTAR

- Configuration expérimentale
 - Drones: Parrot Anafi (masse ~ 400 g) et DJI Mavic Pro (masse ~ 800 g)
 - Vitesse d'impact : 16 m/s
 - Cible: Mannequin Hybrid III
 - 3 configurations d'essais / types de drones
 - 3 essais de répétabilité
- Instrumentation et traitement des données
 - Vérin : mesure des déplacements, vitesses et accélérations
 - Acquisition : Machine (20 kHz intégré) / Mannequin 20 kHz → 50 kHz
 - Tête mannequin : 3 accéléromètres 20000 m/s² + 3 vitesses angulaires 200 rad/s
 - Cou manneguin: 3 forces / 3 moments
 - Critères biomécaniques brut : HIC, Bric, N_{ii}, F_{xvz} + (Analyse multi-critères à postériori)

GIS: DEFINITION DE LA CAMPAGNE EXPERIMENTALE

Caractéristique de la campagne - IFSTTAR

Plan d'expérience V1 :

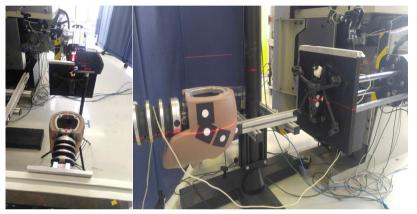

NB : Alignement des centres de gravité drone/mannequin pour chaque configuration

→ L'idée étant de considérer le pire des cas en terme de transfert d'énergie

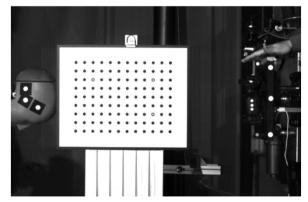
Configuration A : Impact sur vertex

Configuration B : Impact frontal orienté à 58°

Configuration C : Impact pariétal


GIS: CAMPAGNE EXPERIMENTALE

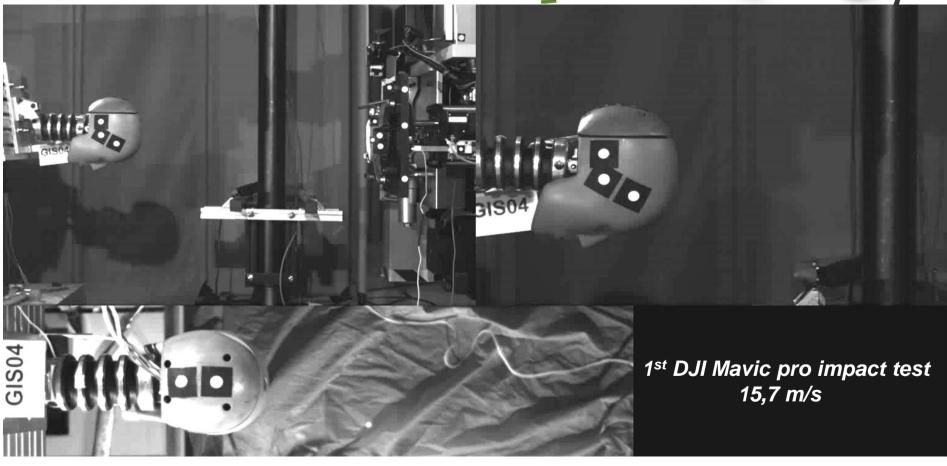
Campagne expérimentale – 1ère série d'essais



Environnement expérimental

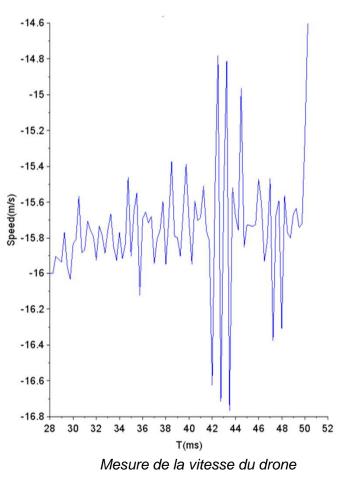
Alignement des centres de gravité par centrage laser

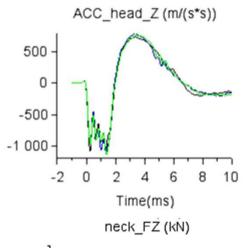
Calibration corrélation d'image (1 fois / config. / drone)

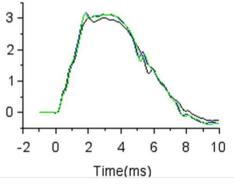

GIS: EXPERIMENTAL INVESTIGATION

Campagne expérimentale – 1ère série d'essais

Drone DJI Mavic


GIS: EXPERIMENTAL INVESTIGATION


Campagne expérimentale – 1ère série d'essais



Mesure des accélérations (3 essais)

→ Protocole peu dispersif

Mesure de la surface d'impact possible

Ground Impact Study

Eléments bibliographiques & campagne expérimentale

Fabien Coussa, Julien Berthe
ONERA DMAS

Philippe Beillas, François Bermond
IFSTTAR

Remerciements à Parrot

Henry de Plinval – directeur du programme drones

Conventions drone DGAC

- ✓ PHYDIAS « Drones Innovants pour de nouvelles Applications et une Sécurité accrue », soutien filière
- ✓ GIS « Ground Impact Study » : chute d'un drone sur une personne, 2018~19

AVOCETTES

(AViOnique sûre et séCuriséE pour nouvelles mobiliTés et auTonomiE – Surveillance étendue)

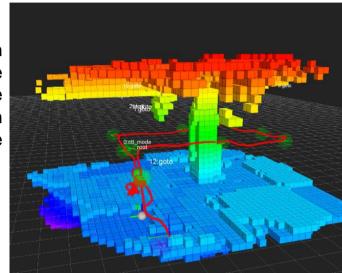
- ✓ Technologies pour l'autonomie : SPO, grande élongation, UAM
- ✓ 2016-18 Ops intérimaires ~ PMEs,
- √ 2019-2022 avec Safran-Thales-Orange

Fin du projet H2020 INACHUS

- ✓ Localiser victimes lors de crises
- ✓ ONERA chargé démonstrations

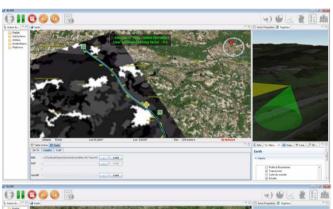
Urban Aerial Mobility / Logistique Urbaine

- ✓ Pré-étude avec Airbus, Thales, Safran, La Poste, Cdiscount + lien autres propositions CORAC
- ✓ Caractériser les environnements, les contraintes, développements nécessaires
- ✓ Initiative européenne : réponse de Toulouse Metropole


Partenariat de recherche industrielle SNCF – ONERA

Thèmes de recherche:

Analyse Système;


- Réglementation et sécurité;
- Stations sol;
- Capteurs et charges utiles;
- Traitement de données;
- GNC et perception pour des vols sûrs et automatisés

Exploration automatique de zone avec une perception 3D embarquée

Contact: sylvain.bertrand@onera.fr

Simulation pour évaluation de la sécurité, comparaison d'architectures et de CONOPS et élaboration de spécifications

Traitement de données pour lever des alarmes sur anomalies suspectées

DROPTER

ANGE

> VISION

> TERRISCOPE

> CORUS

> ERA

> VSR700

Nouveau drone hélicoptère 100kg

Nouveau drone avion 75kg

> SHIELD

Questions?

ONERA

THE FRENCH AEROSPACE LAB