Multidisciplinary Design Optimization of Aircraft Configurations Part 2: High-fidelity aerostructural optimization

Joaquim R. R. A. Martins

with contributions from Gaetan K. W. Kenway, Graeme J. Kennedy, Zhoujie Lyu, and Timothy Brooks

The von Karman Institute for Fluid Dynamics

VKI Lecture Series • Brussels, Belgium • May 24, 2016

With 90,000 daily flights, improvements in aircraft performance has a huge impact

Airplane fuel burn per seat has decreased by over 80% since first jet

Boeing 737-800 vs. Toyota Prius

The 737 is equivalent to 2 people in a Priusbut over 8x faster

The next generation of aircraft demands even more of the design process

- Highly-flexible high aspect ratio wings
- Unknown design space and interdisciplinary trade-offs
- High risk

ALL DESIGNATION OF THE OWNER OWNER OF THE OWNER OWNER

Want to optimize both aerodynamic shape and structural sizing, with high-fidelity

3 major challenges

 Computational costly to evaluate objective and constraints

2. Multiple highly coupled systems

3. Large numbers of design variables, design points and constraints

Multidisciplinary Design Optimization of Aircraft Configurations Part 2: High-fidelity aerostructural optimization

- Choice of optimization algorithm
- Computing derivatives efficiently
- Aerodynamic shape optimization
- Aerostructural design optimization
- Summary

Multidisciplinary Design Optimization of Aircraft Configurations Part 2: High-fidelity aerostructural optimization

- Choice of optimization algorithm
- Computing derivatives efficiently
- Aerodynamic shape optimization
- Aerostructural design optimization
- Summary

Gradient-based optimization is the only hope for large numbers of design variables

Multidisciplinary Design Optimization of Aircraft Configurations Part 2: High-fidelity aerostructural optimization

- Choice of optimization algorithm
- Computing derivatives efficiently
- Aerodynamic shape optimization
- Aerostructural design optimization
- Summary

Gradient-based optimization requires gradient of objective and Jacobian of constraints

$$egin{aligned} & \min_{x \in \mathbb{R}^n} & f(x,y(x)) \ & ext{s.t.} & h(x,y(x)) = 0 \ & g(x,y(x)) \leq 0 \end{aligned}$$

x: design variables

y: state variables, determined implicitly by solving R(x, y(x)) = 0

Need df/dx (and also dh/dx, dg/dx).

Methods for computing derivatives

Monolithic Black boxes input and outputs	Finite-differences	$\frac{\mathrm{d}f}{\mathrm{d}x_j} = \frac{f(x_j + h) - f(x)}{h} + \mathcal{O}(h)$
	Complex-step	$\frac{\mathrm{d}f}{\mathrm{d}x_j} = \frac{\mathrm{Im}\left[f(x_j + ih)\right]}{h} + \mathcal{O}(h^2)$
Analytic Governing eqns state variables	Direct Adjoint	$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \begin{bmatrix} \partial R \\ \partial y \end{bmatrix}^{-1} \frac{\partial R}{\partial x}$
Algorithmic differentiation <i>Lines of code</i> <i>code variables</i>	Forward $\begin{bmatrix} 1 & 0 & \dots & 0 \\ -\frac{\partial T_2}{\partial t_1} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ -\frac{\partial T_n}{\partial t_1} & \dots & -\frac{\partial T_n}{\partial t_{n-1}} \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ \frac{\mathrm{d}t_2}{\mathrm{d}t_1} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \frac{\mathrm{d}t_n}{\mathrm{d}t_1} & \cdots & \frac{\mathrm{d}t_n}{\mathrm{d}t_{n-1}} \end{bmatrix} = \mathbf{I} = \begin{bmatrix} 1 - \frac{\partial T_2}{\partial t_1} \cdots & -\frac{\partial T_n}{\partial t_1} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & -\frac{\partial T_n}{\partial t_{n-1}} \\ 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \frac{\mathrm{d}t_2}{\mathrm{d}t_1} \cdots \frac{\mathrm{d}t_n}{\mathrm{d}t_1} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & 1 & \frac{\mathrm{d}t_n}{\mathrm{d}t_{n-1}} \\ 0 & \cdots & 0 & 1 \end{bmatrix}$

[Martins and Hwang, AIAA Journal, 2013]

[Martins et al., ACM TOMS, 2003]

Analytic methods evaluate derivatives by linearizing the governing equations

Need df/dx (and also dh/dx, dg/dx), f(x, y(x))

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x}$$

Derivative of the governing equations: R(x, y(x)) = 0

$$\frac{\mathrm{d}R}{\mathrm{d}x} = \frac{\partial R}{\partial x} + \frac{\partial R}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \quad \Rightarrow \quad \frac{\partial R}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\partial R}{\partial x}$$

Substitute result into the derivative equation

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} \left[\frac{\partial R}{\partial y}\right]^{-1} \frac{\partial R}{\partial x}$$

$$\psi$$

Derivatives are obtained using the algorithmic differentiation adjoint (ADjoint)

Solve the governing equations

R(x,y(x))=0

form and solve the adjoint equations

$$\left[\frac{\partial R}{\partial y}\right]^T \psi = -\frac{\partial f}{\partial y}$$

and compute the derivatives

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} + \psi^T \frac{\partial R}{\partial x}$$

[Mader et al., AIAA Journal, 2008]

Our requirements are that the approach should:

- Yield derivatives consistent with the flow solution and be verifiable (e.g., with complex step).
- Require **no modification** of original code.
- Require **no duplication** of original code.
- Result in **efficient adjoint** derivative computation.
- Have an **automatic implementation**.
- Incur no penalty to the CFD solution code.
- Low memory usage.

Our ADjoint has evolved over four distinct approaches

- 1. **Single cell**: AD cell residual routine, loop over cells to assemble full Jacobian [2005].
- Forward mode coloring: AD original residual routine using coloring for efficiency and store full Jacobian [2011].
- 3. **Full reverse mode**: AD master ghost routine that yields the desired Jacobian-vector products and derivatives, matrix free [2014].
- 4. **Hybrid reverse mode**: AD individual subroutines in master ghost routine and assemble Jacobian-vector products manually [2015].

Flow adjoint solved with PETSc, using a hierarchy of pre-conditioners

Both the flow and adjoint solution scale well with the number of processors

Multidisciplinary Design Optimization of Aircraft Configurations Part 2: High-fidelity aerostructural optimization

- Choice of optimization algorithm
- Computing derivatives efficiently
- Aerodynamic shape optimization
- Aerostructural design optimization
- Summary

Small differences in shape make a big difference in performance

Wing aerodynamic shape optimization requires a high-fidelity model

Navier–Stokes equations

$$\frac{\partial w}{\partial t} + \frac{1}{A} \oint F_i \cdot \hat{n} dl - \frac{1}{A} \oint F_v \cdot \hat{n} dl = 0$$

$$w = \begin{bmatrix} \rho \\ \rho u_{1} \\ \rho u_{2} \\ \rho E \end{bmatrix} \quad F_{i_{1}} = \begin{bmatrix} \rho u_{1} \\ \rho u_{1}^{2} + p \\ \rho u_{1} u_{2} \\ (E + p) u_{1} \end{bmatrix} \quad F_{v_{1}} = \begin{bmatrix} 0 \\ \tau_{11} \\ \tau_{12} \\ u_{1}\tau_{11} + u_{2}\tau_{12} - q_{1} \end{bmatrix}$$
$$\tau_{11} = (\mu + \mu_{t}) \frac{M_{\infty}}{Re} \frac{2}{3} (2u_{1} - u_{2})$$
$$q_{1} = -\frac{M_{\infty}}{Re(\gamma - 1)} (\frac{\mu}{Pr} + \frac{\mu_{t}}{Pr_{t}}) \frac{\partial a^{2}}{\partial x_{1}}$$

[Shockwaves on wings]

© 2012 J.R.R.A. Martins

Reynolds-averaged Navier–Stokes equations are solved in a 3D domain

Combine flow solver, adjoint solver, and gradient-based optimizer to enable design

Fast mesh deformation handles large design changes

Common Research Model (CRM) wing is a new aerodynamic shape optimization benchmark

AIAA Aerodynamic Design Optimization Discussion Group (ADODG) Wing aerodynamic shape optimization requires hundreds of design variables

Want to minimize drag by varying shape, subject to lift and geometric constraints

	Function/variable	Description	Quantity
minimize	C_D	Drag coefficient	
with respect to	$lpha _{z}$	Angle of attack FFD control point <i>z</i> -coordinates Total design variables	$egin{array}{c} 1 \\ 720 \\ 721 \end{array}$
subject to	$C_{L} = 0.5$ $C_{M_{y}} \geq -0.17$ $t \geq 0.25t_{\text{base}}$ $V \geq V_{\text{base}}$ $\Delta z_{\text{TE,upper}} = -\Delta z_{\text{TE,lower}}$ $\Delta z_{\text{LE,upper,root}} = -\Delta z_{\text{LE,lower,root}}$	Lift coefficient constraint Moment coefficient constraint Minimum thickness constraints Minimum volume constraint Fixed trailing edge constraints Fixed wing root incidence constraint Total constraints	$1\\1\\750\\1\\15\\1\\769$

28 million-cell mesh is used for optimization

- Wing of the CRM configuration [Vassberg AIAA 2008-6919]
- Wing optimization problem developed by AIAA Aerodynamic Design Optimization DG.
- Hyperbolically-generated meshes are used.
- The meshes have O-grid topology to a farfield located at a distance of 25 times span.
- Mesh sizes range from 450k to 230M.

Grid level	Grid size	y^+
L00	230,686,720	0.233
LO	28,835,840	0.493
L1	3,604,480	0.945
L2	450, 560	2.213

We use a multilevel approach to refine the optimum

A multilevel approach to design optimization

Multilevel optimization approach is 23 times faster

Started with a good design and made it 8.5% better [Lyu et al., AIAA Journal, 2014]

Optimization eliminated outboard trailing edge separation

Grid convergence verifies the accuracy

[Lyu et al., AIAA Journal, 2014]

Now, let's start with a bad design!

Now, let's start with a really bad design!

Are there multiple local minima?

- Wings with randomly generated surface used as the starting point of the optimization
- The geometries are generated by putting random surface perturbations on the CRM wing
- A total of 3 cases

Three random geometries converged to similar designs

1D slices connecting optimal point show multiple local minima

[Lyu et al., AIAA Journal, 2014]

Variation in objective function is 0.05%, while the variation in geometry is 1% of MAC

Conclusion: The design space is very flat, and yes, numerically there are local minima... but who cares?

[Lyu et al., AIAA Journal, 2014]

The initial and optimized geometries and grids are available with the AIAA Journal paper as supplemental data

Previous Article	ARTICLES IN ADVANCE					Next Article		
	Add to Favo	orites -	<u>Email</u>	Download to	Citation Manager	Trac	k Citations	
	<u>Abstract</u>	PDF	<u>PDF Plu</u>	<u>s (3,068 KB)</u>	Supplemental Mat	erial_	Cited By	

Zhoujie Lyu, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. "Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark"., doi: 10.2514/1.J053318

Current Issue Available Issues Articles in Advance

Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark

Zhoujie Lyu<u>*</u>Gaetan K. W. Kenway<u>*</u>Joaquim R. R. A. Martins<u>*</u> Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109

*Ph.D. Candidate, Department of Aerospace Engineering. Student Member AIAA.

[†]Postdoctoral Research Fellow, Department of Aerospace Engineering. Member AIAA.

‡Associate Professor, Department of Aerospace Engineering. Associate Fellow AIAA.

Sections: Choose 🗘

ABSTRACT

Choose

9

Despite considerable research on aerodynamic shape optimization, there is no standard benchmark problem allowing researchers to compare results. This work addresses this issue by solving a series of aerodynamic shape optimization problems based on the Common Research Model wing benchmark case defined by the Aerodynamic Design Optimization Discussion Group. The aerodynamic model solves the Reynolds-averaged Navier-Stokes equations with a Spalart-Allmaras turbulence model. A gradient-based optimization algorithm

Drag decomposition of this result by ONERA shows low spurious drag

CD components (d.c.)	Ref. CRM (CL=0,503)	Opt. CRM (CL=0,505)
CDw	8,47	-0,18
CDvp	36,49	30,80
CDi	97,45	96,35
CDfriction	59,32	58,58
CDfardfield	201,73	185,55
CDnearfield	202,26	187,13
CDspurious	0,53	1,58

[Dumont and Méheut, AIAA 2016-1293]

Drag decomposition by ONERA shows the optimization trade-offs

Consider 5 flight conditions for a more robust design

Resulting wing design compromises optimally between flight conditions

Drag coefficient is 2 counts higher at nominal condition

The ADODG introduced new multipoint benchmark cases

[Kenway and Martins, *AIAA Journal*, 2015]

The optimum wing for the 9-point case has a more reasonable airfoil thickness and leading edge curvature

ML/cD contours show the off-design performance of the optimized wings

The contours of 99% max ML/cD for the 9-point case (4.6) highlight the off-design performance differences

Case	L2 Opt	L1 Opt	α -Mach sweep	Contour	Total
Initial	_	_	820	3 2 3 4	4 054
4.1	344	1088	580	2 6 2 9	4641
4.2	935	3 0 2 3	638	3 308	7 904
4.3	825	3 266	624	2700	7 414
4.4	820	3441	597	3 2 4 7	8 105
4.5	809	3 508	676	3 2 3 6	8 2 2 9
4.6	2631	10 053	1 850	2777	17 311
Total	6 363	24 380	5 768	21 131	57 659

3D-printed models colored with C_p distributions

Multidisciplinary Design Optimization of Aircraft Configurations Part 2: High-fidelity aerostructural optimization

- Choice of optimization algorithm
- Computing derivatives efficiently
- Aerodynamic shape optimization
- Aerostructural design optimization
- Summary

Wing design demands more than just aerodynamics

Why you should not trust an aerodynamicist (even a brilliant one) to make design decisions

Want to optimize both aerodynamic shape and structural sizing, with high-fidelity

Sequential optimization is equivalent to coordinate descent

MDO for Aircraft Configurations with High-fidelity (MACH)

Python user script

Setup up the problem: objective function, constraints, design variables, optimizer and solver options

Optimizer interface		Aerostructural solver		Geometry modeler
<i>pyOpt</i>		<i>AeroStruct</i>		<i>DVGeometry/GeoMACH</i>
Common interface to various		Coupled solution methods and coupled		Defines and manipulates
optimization software		derivative evaluation		geometry, evaluates derivatives
SQP	Other optimizers	Structural solver <i>TACS</i> Governing and adjoint equations	Flow solver <i>SUMad</i> Governing and adjoint equations	

- Underlying solvers are parallel and compiled
- Coupling done through memory only
- Emphasis on clean Python user interface
- Solver independent

[Kenway et al., AIAA J., 2014]

[Kennedy and Martins, Finite Elem. Des., 2014]

pyOptSparse is available as **Open source software** https://bitbucket.org/mdolab/pyoptsparse

≡	Sitbucket Dashboard - Teams - Repositories - Snippets - Create -	Find a repositor	a	0	- 🔊
N W	e don't have an email address for your account. Add one now.				
0	Source Image: margin default margin default Image: margin default margin default Image: margin default margin default	S	ource	Diff I	History
Ш	■ d8545f0 2015-09-14 - Full commit	Blame Embed	Raw	Edit	-
0 12 12	Tutorial The following shows how to get started with pyOptSparse by solving Schittkowski's TP37 constrained program listing and then go through each statement line by line:	roblem. First, we sho	w the co	mplete	
₫ € 4	<pre>import pyoptsparse def objfunc(xdict): x = xdict['xvars'] funcs = {} funcs['obj'] = -x[0]*x[1]*x[2] conval = [0]*2 conval[0] = x[0] + 2.*x[1] + 2.*x[2] - 72.0 conval[1] = -x[0] - 2.*x[1] - 2.*x[2] funcs['con'] = conval fail = False</pre>				
	<pre>return funcs, fail optProb = pyoptsparse.Optimization('TP037', cbjfunc) optProb.addVarGroup('xvars',3, 'c',lower=[0,0,0], upper=[42,42,42], value=10) optProb.addConGroup('con',2, lower=None, upper=0.0) optProb.addObj('cbj') print optProb opt = pyoptsparse.SLSQP() sol = opt(optProb, sens='FD') print sol</pre>				

Coupled solution of aerodynamics and structures, and the corresponding coupled adjoint

Solve the coupled governing equations

$$R(x, y) = \begin{bmatrix} R_A(x, y_A, y_S) \\ R_S(x, y_A, y_S) \end{bmatrix} = 0$$

 $\Gamma_{\Omega} \sigma T \sigma T$

form and solve the adjoint equations

 $(\mathbf{I}\mathbf{X})$

$$\frac{\partial R}{\partial y}^{T}\psi = \frac{\partial f}{\partial y}^{T} \text{ where } \frac{\partial R}{\partial y}^{T} = \begin{bmatrix} \frac{\partial R_{A}}{\partial y_{A}} & \frac{\partial R_{S}}{\partial y_{A}} \\ \frac{\partial R_{A}}{\partial y_{S}} & \frac{\partial R_{S}}{\partial y_{S}}^{T} \end{bmatrix}$$
and compute the gradient
$$\frac{df}{dy} = \frac{\partial f}{\partial y} - \psi^{T}\frac{\partial R}{\partial y}$$

OX

ØХ

Adjoint method efficiently computes gradients with respect to thousands of variables

[Kenway et al., AIAA J., 2014]

A smooth function and accurate gradients keep the optimizer happy

Let's do aerostructural optimization!

NASA-Michigan undeformed Common Research Model (uCRM)

Optimize 973 "aerodynamic" and structural sizing design variables

Objective and design variables

	Function/variable	Description	Quantity
minimize	β Fuel burn + $(1 - \beta)$ TOGW		
with respect to	$x_{ m span}$	Wing span	1
	$x_{ m sweep}$	Wing sweep	1
	$x_{ m chord}$	Wing chord	1
	$x_{ m twist}$	Wing twist	8
	$x_{ m airfoil}$	FFD control points	192
	x_{alpha_i}	Angle of attack at each flight condi-	12
	- •	tion	
	x_{η_i}	Tail rotation angle at each flight con-	12
		dition	
	x_{throttle_i}	Throttle setting for each cruise flight	7
		condition	
	$x_{ m altitude}$	Cruise altitude	1
	$X_{ m CG}$	CG position	1
	$x_{ m skin \ pitch}$	Upper/lower stiffener pitch	2
	$x_{ m spar \ pitch}$	Le/Te Spar stiffener pitch	2
	$x_{ m ribs}$	Rib thickness	45
	$x_{ m panel \ thick}$	Panel thickness Skins/Spars	172
	$x_{ m stiff\ thick}$	Panel stiffener thickness Skins/Spars	172
	$x_{ m stiff\ height}$	Panel stiffener height Skins/Spars	172
	$x_{\rm panel\ length}$	Panel length Skin/Spars	172
		Total design variables	973

Constraints

subject to $L = n_i W$ $C_{M_{y_i}} = 0.0$ T = D $1.08D - T_{\rm max} < 0$ $t_{\rm LE}/t_{
m LE_{Init}} \ge 1.0$ $t_{\mathrm{TE}}/t_{\mathrm{TE}_{\mathrm{Init}}} \geq 1.0$ $\mathcal{V}_{\mathrm{wing}} > \mathcal{V}_{\mathrm{fuel}}$ $x_{\rm CG} - 1/4MAC = 0$ $L_{\text{panel}} - x_{\text{panel length}} = 0$ $KS_{stress} \leq 1$ $\mathrm{KS}_{\mathrm{buckling}} \leq 1$ $\mathrm{KS}_{\mathrm{buckling}} \leq 1$ $KS_{buckling} \leq 1$ $KS_{buckling} \leq 1$ $\left| x_{\text{panel thick}_i} - x_{\text{panel thick}_{i+1}} \right| \le 0.0025$ $\left|x_{\text{stiff thick}_i} - x_{\text{stiff thick}_{i+1}}\right| \le 0.0025$ $x_{\mathrm{stiff \ height}_i} - x_{\mathrm{stiff \ height}_{i+1}}$ $x_{\text{stiff thick}} - x_{\text{panel thick}} < 0.005$ $\Delta z_{\mathrm{TE,upper}} = -\Delta z_{\mathrm{TE,lower}}$ $\Delta z_{\rm LE,upper} = -\Delta z_{\rm LE,lower}$

Lift constraint	12
Trim constraint	12
Thrust constraint	7
Excess thrust constraint	7
Leading edge radius	20
Trailing edge thickness	20
Minimum fuel volume	1
CG location at $1/4$ chord MAC	1
Target panel length	172
2.5 g Yield stress	4
2.5 g Buckling	3
-1.0 g Buckling	3
1.78 g Yield stress	3
1.78 g Buckling	4
Skin thickness adjacency	168
Stiffener thickness adjacency	168
Stiffener height adjacency	168
Maximum stiffener-skin difference	172
Fixed trailing edge	8
Fixed leading edge	8
Total constraints	961

Considering multiple flight conditions is required for a practical design

- 7 cruise conditions for performance
- 2 off design conditions
- 3 maneuver condition for structural constraints
- Aircraft trimmed at all conditions

There is no efficient way of evaluating a large square Jacobian...

...so we aggregate the constraints to avoid large square Jacobians

$$\mathsf{KS}(x, y(x)) = \frac{1}{\rho} \ln \left[\sum_{i=1}^{m} e^{\rho g_i(x, y(x))} \right]$$

[Poon and Martins, Struct. Multidiscip. O., 2005]

The fuel volume is not allowed to decrease

We developed a new buffet onset constraint formulation based on a separation sensor

$$\cos\theta = \frac{\vec{V} \cdot \vec{V}_{\infty}}{|\vec{V}||\vec{V}_{\infty}|} < 0 \qquad \quad \bar{\chi} = \frac{1.0}{1.0 + e^{2k(\cos\theta + \lambda)}} \qquad \qquad S_{\text{sep}} = \frac{1}{S_{\text{ref}}} \int_{S} \bar{\chi} \, \mathrm{d}S$$

Fuel burn contours show the need for multipoint optimization and buffet constraints

This framework enables designers to perform optimal objective and technology tradeoffs

[Kennedy et al., AIAA 2014-0596]

Currently using these tools to refine the next generation of aircraft

Flexible high-aspect ratio wings [Kenway and Martins, AIAA 2015-2790]

Truss-braced wing [Ivaldi, et al., AIAA 2015-3436]

Blended-wing body [Lyu and Martins, *Journal of Aircraft*, 2014]

Tow-steered composite [Brooks et al., 2015] Multidisciplinary Design Optimization of Aircraft Configurations Part 2: High-fidelity aerostructural optimization

- Choice of optimization algorithm
- Computing derivatives efficiently
- Aerodynamic shape optimization
- Aerostructural design optimization
- Summary

Summary

- Efficient and accurate gradient computation via adjoints methods
- Robust aerodynamic shape optimization
- Extended adjoint method to multiple disciplines
- Aerostructural design optimization with respect to 1000 design variables
- Still a lot of work to do!

Thank you!

John Hwang Peter Lyu Gaetan Kenway

Graeme Kennedy

http://mdolab.engin.umich.edu/publications

More information:

MDOIab Newsletter-Fall 2014

Dear Friend,

Welcome to the MDClab newsletter, an update on research and open source software that we send a few times a year. You are receiving this because I think you are interested in numerical optimization. MDC, engineering design, or ancraft design. If this is not the case, feel free to <u>unsubscribe</u>. If you know someone who might like to subscribe, please forward them this newsletter. Best regards, *~kesonim Martins*

Latest publications

Wing aerodynamic shape optimization benchmark

The AIAA Aerocynamic Design Optimization Discussion Group developed a series of benchmark cases. In this paper, we solve the RANS-based wing optimization problem, try to find multiple local minima, and solve a number of related wing design optimization problems. The initial and optimized geometries and meshes are provided here.

[Paper] [Preprint] [Optimization movie]

Aerodynamic design optimization of a blended-wing body aircraft

This builds on our previous work on <u>stability-constrained fiving</u> <u>wing optimization</u>. A series of RANS-based eerodynamic design optimization studies shows the tradeoffs between drag, trim, and stability for the NASA/Boeing BWB. The photo on the left shows 3D-printed models with pressure colormaps.

[Paper] [Preprint]

Satellite multidisciplinary design optimization benchmark

In collaboration with NASA and the <u>Michigan Exploration</u> Lab. we developed a new large-scale benchmark MDO problem, and solved a problem with 25,000 design variables and 2.2 million state variables by optimizing the data downloaded from a CubeSat subject to operational and physical constraints. This problem is now a <u>plugin</u> in the <u>OpenMDAO</u> open source project. Download our publications and subscribe to our newsletter at:

http://mdolab.engin.umich.edu

UNIVERSITY of MICHIGAN

[Paper] [Preprint]

Relevant publications

- J. R. R. A. Martins and J. T. Hwang. Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA Journal, 51(11):2582–2599, November 2013. doi: 10.2514/1.J052184.
- 2. J. R. R. A. Martins and A. B. Lambe. Multidisciplinary design optimization: A survey of architectures. AIAA Journal, 51(9):2049–2075, September 2013. doi:10.2514/1.J051895.
- J. T. Hwang, D. Y. Lee, J. W. Cutler, and J. R. R. A. Martins. Large-scale multidisciplinary optimization of a small satellite's design and operation. Journal of Spacecraft and Rockets, 51(5):1648–1663, September 2014. doi: 10.2514/1.A32751.
- 4. G. K. W. Kenway and J. R. R. A. Martins. Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. Journal of Aircraft, 51(1):144–160, January 2014. doi:10.2514/1.C032150.
- G. K. W. Kenway, G. J. Kennedy, and J. R. R. A. Martins. Scalable parallel approach for high-fidelity steadystate aeroelastic analysis and derivative computations. AIAA Journal, 52(5):935–951, May 2014. doi: 10.2514/1.J052255.
- R. E. Perez, P. W. Jansen, and J. R. R. A. Martins. pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization. Structural and Multidisciplinary Optimization, 45(1):101–118, January 2012. doi:10.1007/s00158-011-0666-3.
- J. T. Hwang, S. Roy, J. Y. Kao, J. R. R. A. Martins, and W. A. Crossley. Simultaneous aircraft allocation and mission optimization using a modular adjoint approach. In Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Kissimmee, FL, Jan. 2015. AIAA 2015-0900.
- 8. J. Y. Kao, J. T. Hwang, J. R. R. A. Martins, J. S. Gray, and K. T. Moore. A modular adjoint approach to aircraft mission analysis and optimization. In Proceedings of the AIAA Science and Technology Forum and Exposition (SciTech), Kissimmee, FL, January 2015. AIAA 2015-0136.