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Once numerical simulations are developed, 
they can be used for design optimization

wing span 
airfoil shapes 
structural sizing

fuel burn

structural 
stresses

minimize 
with respect to 

subject to

f(x) 
x 
c(x) ≤ 0

Design 
optimization 
problem:

objective 
design variables 
constraints

design changes



Aircraft are performance critical and hence 
numerical optimization is especially valuable  

JAL B787 climbing after takeoff from SAN • © 2013 J.R.R.A. Martins



Complex systems require the consideration of 
multiple disciplines, hence MDO was born



• A review of MDO architectures 
• A new MDO architecture
• Applications
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A review of MDO architectures
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[Chittick and Martins, Struct. Multidiscip. O., 2008]

Sequential optimization fails to find the 
multidisciplinary optimum 

http://mdolab.engin.umich.edu/content/asymmetric-suboptimization-approach-aerostructural-optimization-0


The design process in industry 
is not tailored towards MDO

Multidisciplinary Design Optimization Introduction

Typical Aircraft Company Organization

Personnel hierarchy
Design process

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 7 / 75



The N2 Diagram and Design Structure Matrix (DSM)

Background
Notation and Diagrams
Architecture Examples

Conclusions

The N2 Diagram / Design Structure Matrix

Optimization A

Aerodynamics B

Atmosphere C

Economics D

Emissions E

Loads F

Noise G

Performance H

Sizing I

Weight J

Structures K

Mission L

Reliability M

Propulsion N

System O

A

B
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D
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F
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H

I

J

K
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M

N

O

A B C D E F G H I J K L M N O

Analysis 1 y1 y1

y2 Analysis 2 y2

y3 y3 Analysis 3

Diagram conventions:

Components on main diagonal, coupling data on o�-diagonal nodes

Component inputs in same column, component outputs in same row

External inputs and outputs may also be included
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‣ Components on main diagonal, coupling data on off-diagonal nodes
‣ Component inputs in same column, component outputs in same row 
‣ External inputs and outputs may also be included



Extending the DSM syntax: 
A  Gauss–Seidel Multidisciplinary Analysis Example

Background
Notation and Diagrams
Architecture Examples

Conclusions

DSM Extensions - A Multidisciplinary Analysis

yt x0, x1 x0, x2 x0, x3

(no data) 0,4�1:
MDA

1 : yt2, y
t
3 2 : yt3

y1 4 : y1
1:

Analysis 1
2 : y1 3 : y1

y2 4 : y2
2:

Analysis 2
3 : y2

y3 4 : y3
3:

Analysis 3
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Variable dependency
Variables

Initial input 
variable row

Final output 
variable column

Driver

Process flow



XDSM

12

http://mdolab.engin.umich.edu/content/xdsm-overview

http://mdolab.engin.umich.edu/content/xdsm-overview


A  Jacobi Multidisciplinary Analysis Example
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Background
Notation and Diagrams
Architecture Examples
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DSM Extensions - An Optimization Problem

x

x� 0,2�1:
Optimization 1 : x 1 : x

2 : f
1:

Objective

2 : c
1:

Constraints

Extensions for visualization purposes:

“Drivers” are presented using a distinct block shape (rounded
rectangle)

Process flow displayed by a di�erent line style (thin, black) than
data dependency (thick, gray)

Lambe and Martins Unified MDO 7 of 15

An Optimization Problem

‣ Follow sequence of numbers and thin black lines
‣ When number or index is repeated, procedures can be 

parallelized
‣ Close the loops



The Multidisciplinary Feasible (MDF) Architecture

Background
Notation and Diagrams
Architecture Examples

Conclusions

The Multidisciplinary Feasible (MDF) Architecture

Problem Formulation

minimize f0 (x, y (x))

with respect to x

subject to c0 (x, y (x)) � 0

ci (x0, xi, yi (x0, xi, yj �=i)) � 0

cc and R constraint groups and ȳ and yt variable groups eliminated
through the MDA process
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The Multidisciplinary Feasible (MDF) Architecture

Background
Notation and Diagrams
Architecture Examples

Conclusions

The Multidisciplinary Feasible (MDF) Architecture

x yt

x� 0, 7�1:
Optimization

2 : x0, x1 3 : x0, x2 4 : x0, x3 6 : x

1, 5�2:
MDA

2 : yt2, y
t
3 3 : yt3

y�1 5 : y1
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Analysis 1
3 : y1 4 : y1 6 : y1

y�2 5 : y2
3:

Analysis 2
4 : y2 6 : y2

y�3 5 : y3
4:

Analysis 3
6 : y3

7 : f, c 6:
Functions
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Individual Discipline Feasible (IDF)
Background

Notation and Diagrams
Architecture Examples

Conclusions

The Individual Discipline Feasible (IDF) Architecture

Problem Formulation

minimize f0
�
x, y

�
x, yt

��

with respect to x, yt

subject to c0
�
x, y

�
x, yt

��
⇥ 0

ci
�
x0, xi, yi

�
x0, xi, y

t
j �=i

��
⇥ 0

yti � yi
�
x0, xi, y

t
j �=i

�
= 0

Only R constraint group and ȳ variable group eliminated through
independent disciplinary analyses
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Individual Discipline Feasible (IDF)

Background
Notation and Diagrams
Architecture Examples

Conclusions

The Individual Discipline Feasible (IDF) Architecture

x, yt

x� 0,3�1:
Optimization

1 : x0, xi, ytj ⇥=i 2 : x, yt

y�i
1:

Analysis i
2 : yi

3 : f, c, cc 2:
Functions
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Index indicates multiple analysis 
that can be run in parallel



Fig. 1 Classification and summary of the MDO architectures.
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[Martins and Lambe, “MDO: A Survey of Architectures”, AIAAJ, 2013]

http://mdolab.engin.umich.edu/content/multidisciplinary-design-optimization-survey-architectures-1


20

Benchmarking MDO Architectures

[Tedford and Martins, Optimization and Engineering, 2010]

http://mdolab.engin.umich.edu/content/multidisciplinary-design-optimization-survey-architectures-1


MAUD—Modular Analysis and 
Unified Derivatives

Multidisciplinary Design Optimization 
of Aircraft Configurations
        Part 1: A modular coupled adjoint approach



1. Computational costly to 
evaluate objective and 
constraints

2. Multiple highly coupled 
systems 

3. Large numbers of design 
variables, design points and 
constraints

3 major challenges

Mission profile and flight envelope
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Gradient-based methods take 
a more direct path to the optimum



Gradient-based optimization is the only hope 
for large numbers of design variables
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Figure 3: Study 1: Dimension analysis for 2-D Rosenbrock function
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Figure 4: Study 1: Local minimum of 8-D Rosenbrock function

methods reflect in their better ability to find global minimum. As the increasing of problem size, gradient
methods tends toward the local minimum while non-gradient methods can still find the global minimum.
However, consider their performance at high dimension, we cannot take fully use of this advantage.

6



Gradient-based optimization works best with 
accurate and efficient gradient computations

Optimizer

Converged?

Line search

Search 
direction

x

x0

Analysis

Gradient 
computation



Gradient-based optimization requires 
gradient of objective and Jacobian of constraintsAnalytic methods I

min
x2Rn

f (x , y(x))

s.t. h(x , y(x)) = 0
g(x , y(x))  0

x : design variables
y : state variables, determined implicitly by solving R(x , y(x)) = 0

Need df/dx (and also dh/dx , dg/dx),

df

dx

=
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+
@f
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dy
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Derivative of the governing equations:
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dy
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= 0 ) @R
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= �@R

@x

Analytic methods I

Need df/dx (and also dh/dx , dg/dx),
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dR
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@y

dy

dx

= �@R

@x

Substitute result into the derivative equation

df

dx

=
@f

@x

� @f

@y

� dy/ dx

z }| {
@R

@y

��1 @R

@x

| {z }
 

adjoint vector



Methods for computing derivatives
Monolithic
Black boxes
input and outputs

Analytic
Governing eqns
state variables

Direct

Algorithmic 
differentiation
Lines of code
code variables

Complex-step

Finite-differences

Adjoint

Forward

Reverse

Analytic methods I

Need df/dx (and also dh/dx , dg/dx),

df

dx

=
@f

@x

+
@f

@y

dy

dx

Derivative of the governing equations:

dR
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dy
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= 0 ) @R

@y

dy
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@R

@y
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adjoint vector

Derivatives

df

dx

j

=
f (x

j

+ h)� f (x)

h

+O(h)

df

dx

j

=
Im

⇥
f (x

j

+ ih)
⇤

h

+O(h2)

Derivatives

df

dx

j

=
f (x

j

+ h)� f (x)

h

+O(h)

df

dx

j

=
Im

⇥
f (x

j

+ ih)
⇤

h

+O(h2)

with the observed slope of 1, whereas the complex-step formula
has second-order convergence, which agrees with the slope of 2 in
the plot.

D. Algorithmic Differentiation

AD, also known as computational differentiation or automatic
differentiation, is a well-known method based on the systematic
application of the differentiation chain rule to computer programs
[52,53]. Although this approach is as accurate as an analytic method,
it is potentially much easier to implement because the imple-
mentation can be done automatically. To explain AD, we start by
describing the basic theory and how it relates to the unifying chain
rule (9) introduced in the preceding sections.We then explain how the
method is implemented in practice and show an example.
From theADperspective, the variables v in the chain rule (9) are all

of the variables assigned in the computer program, denoted t, andAD
applies the chain rule for every single line in the program. The
computer program can thus be considered a sequence of explicit
functions Ti, where i ! 1; : : : ; n. In its simplest form, each function
in this sequence depends only on the inputs and the functions that
have been computed earlier in the sequence, as expressed in the
functional dependence (1).
Asmentioned in Sec. IV.B, for this assumption to hold, we assume

that all of the loops in the program are unrolled. Therefore, no
variables are overwritten, and each variable depends only on earlier
variables in the sequence. This assumption is not restrictive,
because programs iterate the chain rule (and thus the total derivatives)
together with the program variables, converging to the correct total
derivatives.
In the AD perspective, the independent variables x and the

quantities of interest f are assumed to be in the vector of variables t.
To make clear the connection to the other derivative computation
methods, we group these variables as follows:

v ! "t1; : : : ; tnx|!!!!!{z!!!!!}
x

; : : : ; tj; : : : ; ti; : : : ; t#n−nf$; : : : ; tn|!!!!!!!!{z!!!!!!!!}
f

%T (25)

Figure 7 shows this definition and the resulting derivation. Note that
the XDSM diagram shows that all variables are above the diagonal,
indicating that there is only forward dependence, because of the

unrolling of all loops. The constraints just enforce that the variables
must be equal to the corresponding function values. Using these
definitions in the unifying chain rule, we obtain a matrix equation, in
which the matrix that contains the unknowns (the total derivatives
thatwewant to compute) is either lower triangular or upper triangular.
The lower triangular system corresponds to the forwardmode and can
be solved using forward substitution, whereas the upper triangular
system corresponds to the reverse mode of AD and can be solved
using back substitution.
These matrix equations can be rewritten as shown at the bottom of

Fig. 7. The equation on the left represents forward-mode AD. In this
case, we choose one tj and keep j fixed. Then, we work our way
forward in the index i ! 1; 2; : : : ; n until we get the desired total
derivative. In the process, we obtain a whole column of the lower
triangular matrix, i.e., the derivatives of all the variables with respect
to the chosen variable.
Using the reverse mode, shown on the bottom right of Fig. 7, we

choose a ti (the quantity we want to differentiate) and work our way
backward in the index j ! n; n − 1; : : : ; 1 all of the way to the
independent variables. This corresponds to obtaining a column of the
upper triangular matrix, i.e., the derivatives of the chosen quantity
with respect to all other variables.
Given these properties, the forward mode is more efficient for

problems in which there are more outputs of interest than inputs,
whereas the opposite is true for the reverse mode.
AlthoughAD ismore accurate than finite differences, it can require

more computational time. This is generally the case when using
forward-mode AD. The computational cost of both methods scales
linearly with the number of inputs. As mentioned in the previous
sections, when finite differences are used to compute the derivatives
of a nonlinear model, the perturbed solution can be warm started
using the previous solution, and so the constant of proportionality can
be less than one. However, the standard forward-mode AD always
has a constant of proportionality approximately equal to one.

E. Numerical Example: Algorithmic Differentiation

We now illustrate the application of AD to the numerical example
introduced in Sec. IV.A. If we use the program listed in Fig. 4, seven
variables are required to relate the input variables to the output
variables through the lines of code in this particular implementation.
These variables are

Fig. 7 Derivation of AD.
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Analytic methods evaluate derivatives 
by linearizing the governing equationsAnalytic methods I

Need df/dx (and also dh/dx , dg/dx),

df

dx

=
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+
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adjoint vector

Analytic methods I

min
x2Rn

f (x , y(x))

s.t. h(x , y(x)) = 0
g(x , y(x))  0

x : design variables
y : state variables, determined implicitly by solving R(x , y(x)) = 0

Need df/dx (and also dh/dx , dg/dx),
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Analytic methods I

min
x2Rn

f (x , y(x))

s.t. h(x , y(x)) = 0
g(x , y(x))  0

x : design variables
y : state variables, determined implicitly by solving R(x , y(x)) = 0

Need df/dx (and also dh/dx , dg/dx),
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=
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Cost of adjoint evaluation is independent 
of the number of design variablesFrom forward chain rule Solution From reverse chain rule
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Coupled solution of aerodynamics and structures, 
and the corresponding coupled adjoint
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The coupled adjoint approach has shown promising 
results for a 2-discipline high-fidelity problem

Aerodynamics

(pressure)

Structures

(stresses)

Fuel burn 
minimization

203 shape 
design variables

737 structural 
design variables

[Kenway, Kennedy and Martins, AIAA Aviation 2014]

http://mdolab.engin.umich.edu/content/aerostructural-optimization-common-research-model-configuration
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The adjoint method computes the gradient 
at the cost of about 1 evaluation

R(x,y) = 0x f = F(x,y)

z

b A-1

Cost: solution of 
a linear system

Az=b

Optimization cost

= O(100) iterations x O(1) evaluation = O(100) hrs



Gradient-based methods enable large-scale 
optimization but they are difficult to implement

R(x,y) = 0x f = F(x,y)

Disadvantages:

‣ The adjoint method requires 

modification of the computational model

‣ The entire model must be differentiable



Engineering design

Large-scale optimization

Gradient-based with 
adjoint

Implementation 
challenges

Motivation

Approach

State of the art

Problem

improve using

enabled by

but…

Our objective: Facilitate the coupling of disciplines and 
the coupled adjoint method implementation



Engineering 
design

Large-scale 
optimization

Gradient-based 
with adjoint

Implementation 
challenges

Handling many 
disciplines A unified theory A modular 

framework

Motivation

Approach

State of the art

Problem
Objective

Solution
Application

Multidisciplinary 
problems

Outline

Aircraft design 
optimization



For optimization to be a useful design tool, 
setting up should be as streamlined as possible

Run optimization

Interpret results

Set up a new optimization problem

‣ Change the objective function

‣ Add/remove design variables from the inputs

‣ Add/remove constraints from the outputs

‣ Add/remove disciplines and models

We need a software framework  
to enable a modular approach



However, existing software frameworks are not 
designed to support the coupled adjoint method

[PHX ModelCenter]



Our approach is to formulate computational 
models as a system of equations

Any computational models can be decomposed into
Input variables x = (x1, . . . , xm

)T

State variables y = (y1, . . . , yp

)T

Output variables f = (f1, . . . , fq)T

The objective is to express it as a system of algebraic equations,

R(u) = 0 where u =

0

@
x

y

f

1

A

Handling many 
disciplines A unified theory A modular 

framework
Multidisciplinary 

problems
Aircraft design 

optimization



Example: aerodynamic and structural analysis 
coupled together

Question: how do we compute df/db in the following problem?
Variable Type
Wing span input b : b = b

⇤

Pressures state p : A(b, p, d) = 0
Displacements state d : d = S(b, p)
Lift output f : f = F (b, p)

Formulated as a system of algebraic equations:
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[Hwang and Martins, AIAAJ, 2013]

We derived the unifying chain rule, which 
generalizes all differentiation methods

http://arc.aiaa.org/doi/full/10.2514/1.J052184


The MAUD framework was developed to facilitate two 
tasks:

1. Solution of a computational model with multiple 
components

2. Efficient computation of the derivatives of the coupled 
system of computational models

This equation inspired the development of the 
Modular Analysis and Unified Derivatives (MAUD) framework 



The MAUD architecture works by 
viewing the model as one large nonlinear system



The MAUD framework core solves 
4 types of sub-problems

1. Nonlinear system

2. Newton system

3. Derivatives in forward 
mode

4. Derivatives in reverse 
mode



MAUD uses linear and nonlinear solvers that  
take advantage of the problem structureThe framework uses efficient 

numerical linear algebra

JOHN T. HWANG AND JOAQUIM R. R. A. MARTINS 27

Algorithm 5. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

end

=

@R

@(p, u)
dp
du dr

Algorithm 6. solve linear [GS]

input : dr
output: du
rhs � dr

while not converged do
for each subsys do
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subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end
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@u
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@R

@u
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Algorithm 7. solve linear [Jacobi]

input : dr
output: du
rhs � dr

while not converged do
scatter du to each subsys.dp
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subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 8. solve linear [Krylov]

input : dr
output: du
rhs dr

function linear operator(x)

dr  x

solve linear

apply linear

y  dr
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du krylov(rhs, linear operator)
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du dr
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Block Gauss-Seidel

Preconditioned 
Krylov subspace methods

40

[Hwang and Martins, 2015 (to be submitted)]



MAUD requires user to define a few basic functions 
for each component



The user provides the computation of partial derivatives, 
and MAUD computes the coupled derivatives 
automatically
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MAUD uses a multiple component  hierarchical 
representation to handle multi-physics systems



This hierarchical component representation enables 
better parallelization and sequencing



MAUD now provides the core algorithms in the 
OpenMDAO framework

‣ Originally developed by team at NASA Glenn
‣ Python-based, open source framework for coupling multiple 

models and optimization 
‣ Facilitates collaboration between industry, academia, and 

government 
‣ Provides a common platform for the development of new 

multidisciplinary analysis and design methods



Applications of MAUD

Multidisciplinary Design Optimization 
of Aircraft Configurations
        Part 1: A modular coupled adjoint approach



A simple application of MAUD: 
Low-fidelity wing aerostructural analysis and design

‣ Lifting line aerodynamic analysis
‣ Spatial beam element structural analysis
‣ Coupled solution yields wing flying shape



Breaking down the problem into  
multiple components is beneficial in MAUD 

‣ Easier to debug
‣ Component derivatives are easier
‣ More flexibility in algorithms and parallelization



Problem structure can be visualized using an 
interactive design structure matrix diagram

‣ Hierarchy of the problem is clearly visible
‣ The structure is shown as a direct structure matrix
‣ Couplings are shown when hovering on components
‣ This facilitates the exploitation of problem structure



The results can be visualized in real time



A more complex application of MAUD: 
Aircraft design with allocation, and mission optimization

[Hwang and Martins, AIAA 2016-1662]



The current aircraft design optimization approach is 
multipoint fuel burn minimization



In reality, the allocation, mission profiles, and design 
should be optimized simultaneously



We perform the allocation-mission-design optimization of 
an aircraft in a 128-route network



Potential issue: Need to compute the performance of 
aircraft in a 128-route network



The solution is to replace the CFD with
a dynamically re-trained surrogate model



The allocation-mission-design optimization involves 
O(1000) design variables



We parametrize a B717-based wing with 
shape and twist variables



We use CFD to solve the Euler equations



We developed a unique mission analysis tool
within the parallel framework 

is dependent on the number of quantities of interest rather than the number of variables. Therefore, for gradient-based
optimization problems with large numbers of design variables, computing total derivatives using the adjoint method is
advantageous. Both direct and adjoint methods have been implemented in a prototype of the computational framework,
and the total derivatives are automatically calculated with the specification of the partial derivatives.

The other important feature of the prototype framework is the ability to hierarchically decompose the problem,
which enables the implementation of different solution strategies. For example, block Gauss–Seidel solvers can be
used on certain parts of the problem while Newton–Krylov solvers are used to solve other parts monolithically. For
large systems, Newton’s method is the only tractable solution method. The lack of robustness of Newton’s method
can be addressed by implementing a line search or trust region method for selecting the sizes of the Newton steps.
Gauss–Seidel methods can be useful by acting as preconditioners, as well as for solving a series of explicit systems.

The basic component of the framework is a mathematical system. A system is defined as a compound system if it
contains subsystems, or an elementary system otherwise. Compound systems can be further classified into serial and
parallel systems. For the mission analysis problem, only serial systems are used, since the problem size is generally
not large enough to possess obvious advantages for parallel computing. Elementary systems can be distinguished
between independent systems, explicit systems, and implicit systems. Independent systems consist of variables that are
not dependent on other variables. Explicit systems include variables that can be determined exactly by an expression
involving only variables from other systems. Implicit systems depend on both variables from within the system as well
as variables from other systems.

The objective here, as motivated by previous sections, is to develop a modular mission analysis tool capable
of performing the proposed simultaneous optimization of aircraft design, airline allocation and flight trajectories.
Therefore, the three driving goals for the development of this tool are: efficiency, robustness, and modularity. Due
to the anticipated large size of the overall problem, a gradient-based optimization scheme must be used to keep the
problem tractable, which results in the need for total derivatives [23]. Many existing tools utilize finite-difference or
complex-step methods to compute such derivatives, but with the anticipated size of the overall coupled optimization
problem, the adjoint method must be used.

Mission

Nonlin: GS
Linear: GS

Flight conditionsB-splines Coupled analysis

Nonlin: Newton
Linear: Krylov

Inputs Outputs

PropulsionHor. equilibriumAerodynamicsVert. equilibrium Fuel weight

W ! L L ! D D ! T

T ! Ẇ Ẇ ! W

Legend

CompoundSystem

IndependentSystem

ImplicitSystem

ExplicitSystem

Symbols

W

L

D

T

aircraft weight

lift
drag

thrust

Figure 2: Hierarchical decomposition of the mission problem in the prototype framework.

The hierarchical structure of the mission analysis problem will now be explained. As shown in Figure 2, the overall
problem is contained within a serial system named mission. Mission contains 5 separate subsystems, and solves them
in sequence using one Gauss–Seidel iteration. The first subsystem is composed of input variables such as altitude
and Mach number control points. These are implemented as independent systems, and are initialized with a single
block Gauss–Seidel iteration. The second subsystem uses these inputs to generate B-spline interpolants, which allow
us to reduce the number of input variables (which are design variables during optimization) while maintaining the
accuracy of the collocation method. The B-spline implementation is similar to the approach taken by Hwang et al.
for a small satellite design optimization problem [20]. The third subsystem takes the parameterized input profiles,
and computes the corresponding flight conditions at each collocation point explicitly. This is done by solving explicit
systems sequentially once using the block Gauss–Seidel solver.

The fourth subsystem contains the nonlinear coupled system of equilibrium equations, as well as the aerodynamic
relations, and the fuel-burn equation. The ordering of subsystems within the coupled analysis block is determined in
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The framework automatically computes derivatives 
using the adjoint method



altitudes up to 20 km. However, one modification is made to the temperature change near the tropopause at 11 km
altitude. Instead of an abrupt change from a negative slope to a zero slope, a cubic function is fitted to the region to
smoothly vary temperature as altitude is increased from 10.5 km to 11.5 km. The continuity in slope is desirable for
gradient-based optimization, as discontinuities may cause the optimization process to be stuck in a loop. The equation
of the cubic fit is determined to be the following:

T (h) = (2.00 ⇥ 10�11)h3 + (2.59 ⇥ 10�6)h2 � (6.75 ⇥ 10�2)h + 6.20 ⇥ 10�2 (1)

for
10500  h  11500 (2)

Having determined the altitude airspeed and flight conditions, we can now enforce the flight equilibrium equations
at these points, and compute the state of the aircraft. We start by writing out the full flight equilibrium equations:

L + (We + Wp + Wf ) cos � � T sin ↵ +
We + Wp + Wf

g

v

2 cos �

d�

dx

= 0 (3)

T cos ↵ + D + (We + Wp + Wf ) sin � +
We + Wp + Wf

g

v cos �

dv

dx

= 0 (4)

M � I
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d2

�

dx

2
(v cos �)2 +

d�

dx

dv

dx

v(cos �)2
◆

= 0 (5)

where We represents the operating empty weight of the aircraft, Wp represents the weight of the payload carried by
the aircraft, and Wf represents the weight of the fuel carried at a particular time instance. The direction of forces
and the flight angles are shown on Figure 1. As shown on the figure, the flight path angle is represented by �, and
the angle of attack is represented by ↵. �T represents the angle at which the engines are mounted with respect to the
horizon. It is assumed to be small, therefore neglected in our formulation. From these equations, we assume each
of the collocation points to be in a steady flight condition. Although this assumption may not necessarily be valid,
the high-fidelity solvers and the aerodynamic surrogate models used have already made the steady flight assumption,
resulting in the loss of unsteady aerodynamic effects. Therefore, even by including the unsteady terms in the flight
equilibrium equations, we are still not able to model the dynamics accurately. In addition to neglecting the unsteady
terms, we have also substituted in the target values for the lift, drag, and moment coefficients: C̃L, C̃D, C̃M in the
following equations:

Figure 1: Free body diagram of flight equilibrium.
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C̃M = 0 (8)
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The flight equilibrium equations are 
solved using a collocation approach
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The mission analysis solves 
the flight equilibrium equations

These target values represent the values required to satisfy the equilibrium equations at the prescribed flight con-
ditions with the current weight estimate. The target values for the three coefficients allow us to solve for the angle of
attack ↵, throttle setting ⌧ , and tail rotation ⌘ implicitly with the following relations:

C̃L � CL(h, M, ↵, ⌘) = 0 (9)

C̃T � CT (h, M, t) = 0 (10)

C̃M � CM (h, M, ↵, ⌘) = 0 (11)

The functions CL, CT , and CM represent the lift, thrust, and pitching moment coefficients, respectively, as cal-
culated by the specified model given the current state of the other variables. By forcing these to be equal to their
respective target values computed from the equilibrium equations, we effectively compute the angle of attack, throttle
setting, and tail rotation angle needed to satisfy the equilibrium equations in a modular manner. A direct approach
would substitute these relations into the equilibrium equations, and utilize callbacks when evaluating and solving
the coupled system, but this would compromise our modularity requirement, and would prevent us from swapping
between aerodynamic solvers and surrogate models easily.

Currently, the aerodynamic relations are solved using a surrogate model with data points generated by a panel
code, Tripan [21]. A kriging model is built with the panel code outputs, which is then interpolated by B-splines for
efficiency [22]. The additional layer of interpolation reduces the evaluation time of the model by an order of magnitude
while incurring a small penalty in accuracy. A similar B-spline approach for interpolating aerodynamic models is used
by Betts and Cramer [19].

The last of the coupled equations is the rate of fuel burn equation:

dWf

dx

=
SFC 1

2⇢v

2
SCT

v cos �

(12)

This ODE must be solved to compute the total weight of the aircraft at each of the collocation points. We have
converted the rate of fuel burn in time to the rate of fuel burn in horizontal distance through the relations provided by
airspeed and flight path angle. Since the amount of fuel carried at the end of the mission is known, and can be chosen
a priori, we can use this as the initial condition for solving the ODE. The approach here is to apply the explicit Euler
scheme starting from the end of the mission, and march backwards in distance to the start of the mission.

B. Numerical Framework

The most important contribution that sets this mission analysis tool apart from existing methods is the idea of utilizing
a computational framework to provide benefits in terms of efficiency and modularity. The use of a computational
framework allows us to uniquely tailor the solution strategy of the overall problem by selectively using different
nonlinear and linear solvers for different blocks within the problem. The framework also automates the computation
of total derivatives required for gradient-based optimization. The overall problem can be expressed as a system of
nonlinear algebraic equations:

R(u) = 0 (13)

Here, the vector u represents all variables within the system, and R(u) represents the algebraic system of equations
that is the unified formulation of any numerical model. The vector u

⇤ which solves R(u) = 0 is defined as the solution
of the overall problem.

The computation of total derivatives can be done efficiently by utilizing the unifying chain rule [23], as shown in
the following equation:

@R

@u

du

dr

= I =
@R

@u

T du

dr

T

(14)

where r represents the vector of outputs provided by the system of equations with some input vector u.

r = R(u) (15)

The unifying chain rule equation is presented by Martins and Hwang [23]. From this equation, the total derivatives
can be computed using either the direct method or the adjoint method. The computational cost of the adjoint method
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elevator deflection to trim the aircraft. The equations are

L + W cos � � T sin ↵ +
W

g
v2 cos �

d�

dx
= 0 (7.1)

T cos ↵ + D + W sin � +
W

g
v cos �

dv

dx
= 0 (7.2)

M � I

✓

d2�

dx2

(v cos �)2 +
d�

dx

dv

dx
v(cos �)2

◆

= 0, (7.3)

where ↵ is the angle of attack and � is the climb or descent angle.

Assuming quasi-steady flight conditions, the terms containing derivatives with

respect to x can be ignored. Dropping these terms and expressing in terms of non-

dimensional coe�cients yields

1

2
⇢v2SC̃L + W cos � � 1

2
⇢v2SC̃T sin ↵ = 0 (7.4)

1

2
⇢v2SC̃T cos ↵ +

1

2
⇢v2SCD + W sin � = 0 (7.5)

C̃M = 0. (7.6)

The system of equations is completed by adding surrogate models for the aerody-

namics and propulsion, which are of the form

C̃L � CL(h, M, ↵, ⌘) = 0 (7.7)

C̃M � CM(h, M, ↵, ⌘) = 0 (7.8)

C̃T � CT (h, M, t) = 0, (7.9)

where the variables with tildes indicate target variables while CL, CD, CM , and CT

are functions representing the aerodynamic or propulsion surrogates.

The fuel weight is computed by solving the ODE,

Ẇf =
{SFC}1

2

⇢v2SCT

v cos �
, (7.10)
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The altitude and Mach profiles can be optimized
using a B-spline parametrization
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Figure 10: Altitude and Mach Number optimization for a 1000-nautical mile mission.

V. Conclusion

In this study, we have proposed a new mission analysis and trajectory optimization tool. The robustness of the
tool is demonstrated by successfully optimizing missions with ranges varying from 100 to 9000 nautical miles, and
aircraft weights varying from OEW to MTOW. The combination of the proposed tool and the use of a framework
allows for efficient computation of total derivatives required for gradient-based optimization schemes. The mission
analysis results generated using this tool match well with results generated by existing software. Altitude and Mach
profile optimization was demonstrated. A relation between the number of B-spline control points required for an
oscillation-free solution and the range of the mission is also presented. The progress of the proposed tool thus far has
demonstrated its suitability for the eventual use in a simultaneous multidisciplinary optimization problem.
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The remaining 
variables are 
computed by 

solving a system 
of equations



Multiple trajectories can be optimized quickly
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Allocation problem: 
Maximize airline profit for a given fleet and network



The optimization problem contains 
over 6000 design variables



Allocation-mission-design optimization yields a 
27% increase in airline profit



For the AMD optimization, the next-generation aircraft is 
flown more on the short range routes



Despite the 6000 design variables, 
the optimizer uses only ~100 iterations



The AMD-optimized wing shape 
is different from the multipoint result



Summary

‣ Introduced MDO architectures
‣ Developed MAUD, a novel algorithmic 

framework for coupled analysis and 
gradient computation

‣ MAUD demonstrated in large-scale 
MDO problems, including high-fidelity 
models

‣ Implemented MAUD architecture in 
OpenMDAO

The framework uses efficient 
numerical linear algebra
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Algorithm 5. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

end

=

@R

@(p, u)
dp
du dr

Algorithm 6. solve linear [GS]

input : dr
output: du
rhs � dr

while not converged do
for each subsys do

scatter du to subsys.dp

subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 7. solve linear [Jacobi]

input : dr
output: du
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while not converged do
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subsys.solve linear
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= �

@R
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du dr

@R

@u
du

Algorithm 8. solve linear [Krylov]

input : dr
output: du
rhs dr

function linear operator(x)

dr  x
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apply linear

y  dr

return y

du krylov(rhs, linear operator)
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@u

�1
du dr
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