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Once numerical simulations are developed,
they can be used for design optimization
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Aircraft are performance critical and hence
numerical optimization is especially valuable

JAL B787 climbing after takeoff from SAN « © 2013 J.R.R.A. Martins



Complex systems require the consideration of
multiple disciplines, hence MDO was born
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Sequential optimization is equivalent to
coordinate descent

MDO .
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Sequential optimization fails to find the
multidisciplinary optimum
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The design process in industry
IS not tailored towards MDO
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The N2 Diagram and Design Structure Matrix (DSM)

A B CDEVF GH I J KL MN O
Optimization A A @ . BN BN NN BN BN BN BN ) o O
AerodynamicsB @ B @ ® [
Atmosphere C @ C ®
Economics D @ D
Emissions E @ E
Loads F @ @ F o O
Noise G @ G [
Performance H @ . H @ ° o
Sizing I @ © o 1 @ e
Weight J @ ® J @
Structures K © @ o o K
Mission L o ® O L
Reliability M @ M
Propulsion N @ (] o ® ° N
System 0) o o O

> Components on main diagonal, coupling data on off-diagonal nodes
> Component inputs in same column, component outputs in same row
> External inputs and outputs may also be included



Extending the DSM syntax:
A Gauss—Seidel Multidisciplinary Analysis Example . . . ..

Driver Variable dependency j

Initial input . @/ /g;(),wl / /xo,a;Q / /5130,5133 /

variable row

‘ i
/ (IlO data) @ ;li yé)yg
T |

1:
@—/ 4 : 4 /h Analysis 1

1 I 2:
E ] =92, Analysis 2 42

1 I 3
E [ =93 Analysis 3

1

Final output

. Process flow
variable column



X D S M http://mdolab.engin.umich.edu/content/xdsm-overview
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The XOSM (axrended Dasign Structure Matrix) is a tool usad te visualze MDO processes. It is an extension of the classical Design Structure Matrix
commanly usad in systams arginaericg to dascriae tha interfaces ameng comapsnants of 3 complex systen, In a comrputationsl MDO cortext, the camplex
systent & the MDO architecture, the companants of the system are paaces of software (discipinary analses, aptimizaticn algorthms, surregate models,
atc,) usec Dy the architecture, and the interfaces between components a“e the data axchangad by this software, Becasse the architectura also contains
an gigerthm dofining the ordar in which the scftware i *un, a numbering systam and lines depicting the prozess are introcuced in tha Ziggrem. In this
way, we ore adle to cepture ol of the cete enc process flow of an a-chitecture in o singl= diezram.

The full details of how ta zanstruct and interarat XOSMs are the subest of the paper citad in the foztnote.d

=or thosa nterested v constructing XDSMs for their oan work, sea the attachad files, 'We draw our diagrams using tne Tik? package in LaTeX. Tha files

contain the specific biock and line styles, TiKZ lbrary imports, and formats that are common to all of cur diagrams. Ve have ako incluced some examale
diagrame and & how-to guide far the _aTeX fias. Cammants and saggestions are walcarr e,

A Aython senpt for sutarnatically generatmg XOSM tex saurces has been addegt, T soomt contens @ ches ta whnich componests and dependenoes can
26 added, 310 this class automatically writes a taw fila that drawes the diaganal and off<diagoeal blocks, as well 25 dats flow nes. Datails can be found in the
thon script.

i A S Lambeand 1L A, A Marlins, "Extensions (o (he Design Structure Matrix lfor the Descripli on of Mulli disciplinary Design, Aralysis, arnd
Cptimization Procosses", Structoral and Mukdlsouiary Qeimeatine, wol. 46, no. 2, p. 273-284, 2012,

Attachment Size

[ diagram_rersestex 437 bytes
N diagram_stvles oo 4,41 ¥B
L] XosM_now_totx 516 KB
B co.tex 3.07 KB
M co.cor 55.36 KB
1) moF.tex 3,04 KB
[ moF.pds 57.76 KB

[ xosm py.oe 4.83 KB
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A Jacobi Multidisciplinary Analysis Example

@ [xo,21]  [@o,w2] [T, x5 ]

2—1: I
/ (no data) ( DA )/ 1:ys, 5 Y1, Y3 Y1, Ys
|

I 1:
E ; : Iyl / Analysis 1
@—/ 2 : /—1 L
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An Optimization Problem
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> Follow sequence of numbers and thin black lines

> When number or index Is repeated, procedures can be
parallelized

> Close the loops



The Multidisciplinary Feasible (MDF) Architecture

Problem Formulation

minimize fo (z,y (z))
with respect to =«
subject to ¢g (x,y (x)) >0

ci (o, i, yi (To, i, Yj=i)) > 0



The Multidisciplinary Feasible (MDF) Architecture
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Individual Discipline Feasible (IDF)

Problem Formulation

minimize fy (x,y (Cﬁayt))
with respect to z, v

subject to ¢y (:zz,y (az,yt)) >0

&) (5130,5137;,% (3307$i7y;';éz‘)) >0

Vi = Yi ($07$i7y§¢i) =0



Individual Discipline Feasible (IDF)
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Functions

Index indicates multiple analysis
that can be run in parallel



N
minimize fy (x,y) + Z fi (%0,%i,¥i)
i=1

with respect to x,y,y,y
subject to ¢ (x,y) >0
ci (x0,%;,yi) > 0 for
c;=yi—yi=0 for
R, (x0,%;, ¥jzi, ¥i,yi) =0 for

— AAO

Monolithic

¢ o~
Remove c®, y

SAND

Remove Remove
R,y,y R,y,y

e ~
Remove c¢, y

Nomenclature

o

© <K A

Objective
Consistency constraints
Design variables

State variables
Shared data

Design constraints
Analysis constraints
Coupling variables
Variable copies
Discipline ¢ data

v < o

IDF ——> MDF

Distributed IDF

Multilevel

CO: Copies of the shared variables are created for
each discipline, together with corresponding consistency
constraints. Discipline subproblems minimize difference
between the copies of shared and local variables sub-
ject to local constraints. System subproblem minimizes
objective subject to shared constraints subject to con-
sistency constraints.

BLISS-2000: Discipline subproblems minimize

the objective with respect to local variables subject to
local constraints. A surrogate model of the local op-
tima with respect to the shared variables is maintained.
Then, system subproblem minimizes objective with re-
spect to shared design and coupling variables subject to
shared design and consistency constraints, considering
the disciplinary preferences.

QSD Each discipline is assigned a “budget” for a lo-
cal objective and the discipline problems maximize the
margin in their local constraints and the budgeted ob-
jective. System subproblem minimizes a shared objec-
tive and the budgets of each discipline subject to shared
design constraints and positivity of the margin in each
discipline.

Penalty

ATC: Copies of the shared variables are used in disci-
pline subproblems together with the corresponding con-
sistency constraints. These consistency constraints are
relaxed using a penalty function. System and discipline
subproblems solve their respective relaxed problem in-
dependently. Penalty weights are increased until the
desired consistency is achieved.

IPD / EPD: Applicable to MDO problems with no
shared objectives or constraints. Like ATC, copies of
shared variables are used for every discipline subprob-
lem and the consistency constraints are relaxed with a
penalty function. Unlike ATC, the simple structure of
the disciplinary subproblems is exploited to compute
post-optimality sensitivities to guide the system sub-
problem.

ECO: As in CO, copies of the shared design vari-
ables are used. Disciplinary subproblems minimize
quadratic approximations of the objective subject to lo-
cal constraints and linear models of nonlocal constraints.
Shared variables are determined by the system subprob-
lem, which minimizes the total violation of all consis-
tency constraints.

[Martins and Lambe, “MDO: A Survey of Architectures”, AIAAJ, 2013]

Distributed MDF

CSSO: m system subproblem, disciplinary anal-
yses are replaced by surrogate models. Discipline
subproblems are solved using surrogates for the other
disciplines, and the solutions from these discipline
subproblems are used to update the surrogate mod-
els.

BLISS: Coupled derivatives of the multidisci-
plinary analysis are used to construct linear subprob-
lems for each discipline with respect to local design
variables. Post-optimality derivatives from the so-
lutions of these subproblems are computed to form
the system linear subproblem, which is solved with
respect to shared design variables.

MDOIS: Applicable to MDO problems with no
shared objectives, constraints, or design variables.
Discipline subproblems are solved independently as-
suming fixed coupling variables, and then a multi-
disciplinary analysis is performed to update the cou-

pling.

ASO: System subproblem is like that of MDF, but
some disciplines solve a discipline optimization sub-
problem within the multidisciplinary analysis with
respect to local variables subject to local constraints.
Coupled post-optimality derivatives from the disci-
pline subproblems are computed to guide the system
subproblem.



http://mdolab.engin.umich.edu/content/multidisciplinary-design-optimization-survey-architectures-1
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[Tedford and Martins, Optimization and Engineering, 2010]
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Multidisciplinary Design Optimization
of Aircraft Configurations
Part 1. A modular coupled adjoint approach

MAUD —Modular Analysis and
Unified Derivatives



3 major challenges

| 1. Computational costly to
E | | evaluate objective and
= - constraints

=
OO aaon

2. Multiple highly coupled

systems
|
3. Large numbers of design
| | variables, design points and

constraints



Gradient-based methods take
a more direct path to the optimum
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Gradient-based optimization is the only hope
for large numbers of design variables

Function Evaluation

10°

10*

10°

10°
10°

Quadratic

Linear

SLSQP-finite difference

\

SNOPT-finite difference

SLSQP-analytical

A\

-

o —

4._1

ISNOPT-analytical

10’

Dimension

10°

10°



Gradient-based optimization works best with
accurate and efficient gradient computations

x0

Optimizer

Y
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Search Analysis
direction y

><: Gradient
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Gradient-based optimization requires
gradient of objective and Jacobian of constraints

min £(x, y(x))
st. h(x,y(x))=0
g(x, y(x)) <0

x. design variables
y. state variables, determined implicitly by solving R(x, y(x)) =0

Need df/dx (and also dh/dx, dg/dx)



Methods for computing derivatives

Monolithic Finite-differences  gr  f(x 1 ) — f(x) o
Black boxes dx; h +Oh)
input and outputs
Complex-step df  Im[f(x; + ih)] + OU)
dx; h
Analytic Direct 4y
Governing eqns - N -
state variables df — of of [8/%’] ~'OR
Adjoint dx ox Oy|dy| Ox
e
Algorithmic  |Forward
differentiation . G i
Lines of code S o E —
code variables Reverse or, | om, o _8tj:

[Martins and Hwang, AIAA Journal, 2013]

[Martins et al., ACM TOMS, 2003]


http://mdolab.engin.umich.edu/content/review-and-unification-discrete-methods-computing-derivatives-single-and-multi-disciplinary
http://mdolab.engin.umich.edu/content/complex-step-derivative-approximation-0

Analytic methods evaluate derivatives
by linearizing the governing equations

Need df/dx (and also dh/dx, dg/dx), f(x,y(x))

df  of  of dy
dx 9x 9dy dx

Derivative of the governing equations: R(x,y(x)) =0

dR OR  ORdy
dx 9x Oy dx

oRdy  OR
oy dx  Ox

0 =

Substitute result into the derivative equation

—dy/dx
df of 9f[0R] '0R
dx Ox Oy |dy| Ox

N——— —————

Y



Cost of adjoint evaluation is independent
of the number of design variables

—dy/dx
/_/%

df af O9f[OR] 'OR

dx  ox Oyl|oy| ox
N—
Y

wen [l |

nx>nf —




Coupled solution of aerodynamics and structures,
and the corresponding coupled adjoint

Solve the coupled governing equations

[ Ralx,ya,ys) |
XY=\ Rs(x.yays) | = °

form and solve the adjoint equations )
T i OR," ORs’
. A e
OR" 91" here OR _ | 9Ya Oya
% dy oy ORa" ORs’
and compute the gradient L JYs 0Ys _
df of  1OR
dx Ox OX




The coupled adjoint approach has shown promising
results for a 2-discipline high-fidelity problem

Initinl Qptimized Loral 4 0 0 108E 14101020824 [
Span=58.L0 m };

Span-508m
Adpcectratio=9.04
Wing Mass-30206 kg
TOGW=209375 hyg
Fuel bum=112276kg

Agpect ratic=2.01
-'lmcg mass=-30286 %3
TCGWw22E378 ky
Fuel burn=112276 kg

Aerodynamics

Structures
(pressure)

- (stresses)

B = 737 structural
design variables

Fuel burn T R [ U i S e
minimization e . R — B ) \

2.5y : f~— : i
o] ol 203 shape
ve : ‘. =~ Y _— — -  design variables
;M . c ‘ (/. D . ]
mm———— . . [ ——— —— nf.&._-—— e I f‘——x

[Kenway, Kennedy and Martins, AIAA Aviation 2014]


http://mdolab.engin.umich.edu/content/aerostructural-optimization-common-research-model-configuration

The adjoint method computes the gradient
at the cost of about 1 evaluation

df OF OF OR " '9R Cost: solution of

o . alinear system
ax  0x :5’y oy :8x Areh

Z

Optimization cost
= O(100) iterations x O(1) evaluation = O(100) hrs



Gradient-based methods enable large-scale
optimization but they are difficult to implement

Disadvantages:
> The adjoint method requires
modification of the computational model
> The entire model must be differentiable



Our objective: Facilitate the coupling of disciplines and
the coupled adjoint method implementation

Motivation [ Engineering design }

Improve using

Approach Large-scale optlmlzatlor]

enabled by

)
)

adjoint

Implementation

Problem
challenges

State of the art [ Gradient-based with




Outline

Engineering

Motivation .
design

Approach optimization

Gradient-based

State of the art with adjoint

[ Large-scale

Solution

— e S

Problem Implementation
challenges

Objective

Multidisciplinary (Han.dli.ngl many A unified theory A modular Aircr.aft. degign
problems L disciplines framework optimization

Application




For optimization to be a useful design tool,
setting up should be as streamlined as possible

Run optimization
Interpret results
Set up a new optimization problem
» Change the objective function
> Add/remove design variables from the inputs
» Add/remove constraints from the outputs
» Add/remove disciplines and models

We need a software framework
to enable a modular approach



However, existing software frameworks are not
designed to support the coupled adjoint method
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Our approach is to formulate computational
models as a system of equations

Any computational models can be decomposed into

Input variables X=(X1,...,Xm)"
State variables  y = (y1,...,¥p)"
Output variables = (f,..., fq)T

The objective is to express it as a system of algebraic equations,

X
R(u)y=0 where u= (y)
f

Multidisciplinary (Handlmg many A modular Aircraft design
problems Q disciplines A unified theory framework optimization




Example: aerodynamic and structural analysis
coupled together

Question: how do we compute df/db in the following problem?

Variable Type
Wing span input b: b=>b"
Pressures state p: A(b p,d)=0
Displacements state d: S(b, p)
Lift output f f_ F(b, p)
Formulated as a system of algebraic equations:
b Ry(b,p,d,f)] - b—Db*
_ p - Rp(b7p7 d7 f) - A(bapa d)
Y=lal W= \Ryb.p.d.f)| = |d - S(b,p)
f _Rf(b7p7d7 f)_ _f_F(b7p)_




We derived the unifying chain rule, which
generalizes all differentiation methods

ORdu T "9R1" Tdu]" |— Other methods
oudr  — |ou ar Algorithmic diff.
/ — Coupled adjoint
df  OF \
dx ~ 0x df OF OF dy
finite differences dx 9x 9y dx
chain rule
1 " ORy  AYz] [dfi df2] [OFL OF
df (‘)F 8F BR (9R Ay, Oy, dry dry | _ dy A1y
— = - . i R dfi dfs ar o
dX OX C)y C)y 5X |y, | dy, dy, L JYys, Oys

adjoint method chain rule/adjomt hybrid

[Hwang and Martins, AIAAJ, 2013]


http://arc.aiaa.org/doi/full/10.2514/1.J052184

This equation inspired the development of the
Modular Analysis and Unified Derivatives (MAUD) framework

The MAUD framework was developed to facilitate two
tasks:

1. Solution of a computational model with multiple
components

2. Efficient computation of the derivatives of the coupled
system of computational models



The MAUD architecture works by
viewing the model as one large nonlinear system

. . . ) I o

Variables :

Residuals

[nputs —

— I Qutputs Residuals

Existing frameworks MAUD



The MAUD framework core solves
4 types of sub-problems

1. Nonlinear system R(u) =
OR
2. Newton system —Au = —r
ou
3. Derivatives in forward OR du _ T
mode Oou dr
ORT du?

4. Derivatives In reverse

mode 8?1, dr



MAUD uses linear and nonlinear solvers that
take advantage of the problem structure

Block Gauss-Seidel

Preconditioned _
Krylov subspace methods

[Hwang and Martins, 2015 (to be submitted)]



MAUD requires user to define a few basic functions
for each component

System classes

System CompoundSystem LlementarySystem
= apply-nonlinear Recursive User-implemented
S apply-linear Recursive User-implemented or FD*
g solve_nonlinear | Newton with Nonlinear block Optional
% line search Ganss—Seidel / Jacobi
.’5 solve_linear Krvlov-type with  Linear block Optional
> preconditioning Gauss—Seidel /Jacobi

*FD: finite-difference approximation of the Jacobian.



The user provides the computation of partial derivatives,
and MAUD computes the coupled derivatives
automatically




MAUD uses a multiple component hierarchical
representation to handle multi-physics systems




This hierarchical component representation enables
better parallelization and sequencing

Serial - Parallel Serial - Parallel - Serial  Serial - Parallel - Coupled




MAUD now provides the core algorithms in the
OpenMDAO framework

SERIMIDIAIO

> Originally developed by team at NASA Glenn

> Python-based, open source framework for coupling multiple
models and optimization

> Facilitates collaboration between industry, academia, and
government

> Provides a common platform for the development of new
multidisciplinary analysis and design methods




Multidisciplinary Design Optimization
of Aircraft Configurations
Part 1. A modular coupled adjoint approach

Applications of MAUD



A simple application of MAUD:
Low-fidelity wing aerostructural analysis and design

> Lifting line aerodynamic analysis
> Spatial beam element structural analysis
> Coupled solution yields wing flying shape



Breaking down the problem into
multiple components is beneficial in MAUD
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> Easier to debug
> Component derivatives are easier
> More flexibility in algorithms and parallelization



Problem structure can be visualized using an
interactive design structure matrix diagram

> Hierarchy of the problem is clearly visible

> The structure is shown as a direct structure matrix

> Couplings are shown when hovering on components
> This facilitates the exploitation of problem structure



The results can be visualized in real time

Major Iteration: O twist

fuelburn: 1381636.0 1



A more complex application of MAUD:
Aircraft design with allocation, and mission optimization
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[Hwang and Martins, AIAA 2016-1662]



The current aircraft design optimization approach is
multipoint fuel burn minimization

S any

Select a single Select points (M, Cu) ... (Mn, CLn)
design mission range, R and their weights w1 ... w

minimize w1 fo(R, M1, C1) + ... + wn fB(R, M, CLn)

with respect to the aircraft design

>



In reality, the allocation, mission profiles, and design
should be optimized simultaneously

maximize airline profit

f

p

mission: Mach number, altitude profile I
\

airline allocation: flights per day

N
with respect to design: shape, structure, engine y\\
4

Why?
- Aircraft often flown below their range

- Climb/descent significant on short flights
- Model morphing and continuous descent
- Determine optimal cruise Mach numbers



We perform the allocation-mission-design optimization of
an aircraft in a 128-route network

Linearly tapered wing
with Euler analysis
twist and shape
design variables

g’

128 route network
altitude profiles and
optimal cruise M
design variables

Noumber of posssen pers/day
s folay
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Potential issue: Need to compute the performance of
aircraft in a 128-route network

Obtimizer Aircraft Mlssmn Fllghts
pt domgn proﬁloq per day
erostructural L1ft drag,
analysm mnmont
thht Mission / Fuel burn
condltlons analysis block tlme
Airline A]locatlon
profit analysis
But this

requires... 128 x O(100) x 0O(10) x 0O(100) = O(107)
MISSIONS  MISSIoN  MISSIoN optimization CFD
points  iterations iterations evaluations

=




The solution is to replace the CFD with
a dynamically re-trained surrogate model
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The allocation-mission-design optimization involves
O(1000) design variables

SN T

O(100) O(1000) O(100)
Alircraft geometric Mission profile Alirline allocation
variables variables variables




We parametrize a B717-based wing with
shape and twist variables

Free-form
deformation



We use CFD to solve the Euler equations

SUMad flow solver



We developed a unique mission analysis tool
within the parallel framework

Legend Symbols
- CompoundSystem W aircraft weight
IndependentSystem _ L lift
ImplicitSystem _ D drag
- Nonlin: GS
- ExplicitSystem Linear: GS T thrust
| | ? ] |
Tuputs - Besplines  Coupled analysis - Outputs
Nonlin: Newton
Linear: Krylov
| | | ? |

W — L L—D D—T T 5 W W =W

The framework automatically computes derivatives
using the adjoint method



The mission analysis solves
the flight equilibrium equations

4% d
L+ Wcosy—"1Tsina+ —0200871 =
qg dr

W o
dx

T'cosa+ D+ Wsiny + —wvcos~y
g

de B SFC%,OUQSCT

dx U COS 7Y




The altitude and Mach profiles can be optimized
using a B-spline parametrization
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Multiple trajectories can be optimized quickly

Mission
Range
9000 NM

Alt (103 ft)

Path Angle (deg)

Fuel (103 1b)

100 NM

classic cruise-climb result
appears for longer missions

’//// — 100 NM miésion never \\\\

reaches a steady cruise

———4

more fuel needed for
longer missions

Normalized Range

[Kao, Hwang , Martins, Gray, and Moore, AIAA 2015-0136]


http://arc.aiaa.org/doi/abs/10.2514/6.2015-0136

Allocation problem:

Maximize airline profit for a given fleet and network

NG

B737

B747

Rt 1

Design variables:
1. passengers per flight

Rt 2

2. flights per day

Rt 3

{) ()

Passenger demand

constraints

I
I
I

Thisis a
mixed-integer
optimization
problem

[Hwang et al.,
AlAA 2015-0900]

Aircraft
availability
constraints



The optimization problem contains
over 6000 design variables

Variable Quantity
maximize profit
with respect to  twist §)
shape 72
cruise Mach number for each route (between 0.6 and 0.82) 1 x 128
altitude control points for each route 4575
passengers per flight for each aircraft type and route 5 x 128
flights per day for each aircraft type and route 5 x 128
Total number of design variables 6061
subject to  wing volume constraint 1
wing thickness constraints 100
idle thrust KS constraint for each route 128
max thrust KS constraint for each route 28
linear climb angle bounds for cach mission 22875
demand constraint for each route 128
total flight time constraint for each aircraft 5
Total number of constraints 23365




Allocation-mission-design optimization yields a
27% increase In airline profit

A
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For the AMD optimization, the next-generation aircraft is

flown more on the short range routes
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Despite the 6000 design variables,
the optimizer uses only ~100 iterations
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The AMD-optimized wing shape
is different from the multipoint result
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Multipoint-optimized (minimize fuel burn)
AMD-optimized (maximize profit)




Summary

open[\'|[»]F.\{e)

Introduced MDQO architectures

Developed MAUD, a novel algorithmic
framework for coupled analysis and
gradient computation

MAUD demonstrated in large-scale
MDOQO problems, including high-fidelity
models

Implemented MAUD architecture in
OpenMDAO
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Latest publications

Wing aerodynamic shape optimization benchmark

I "e AJIAA Agrodynamic Lesign LIptmizalion DISCUS$IoN
Group davelopad a senes of bencnmark cases. In this
padter, we 30IVe the RANS-Dasec 'wing oplimization problem,
iry to ind mullipleé ocal minima, and scive a number ot
related wirg dasign opimization problems. Ihe intial and
oplimized gaomaeines and mashes are prowided here,

[ Paper ) [Preprint] [Optimization movie |

Aerodynamic design optimization of a blended-wing body aircraft

This buikis 01 our previous work on 3:ability-constrained flying
wing opfimization, A seres of RANS-based aerodynamic
desgn opt mization stucies shows the tradeoffs between
drag, tim, and stab lity for the NASA/Boeing BWB, The ghoto
on the left shows SD-printed madels with pressure colomaps.

[Paper] [Preorint]

Satellite multidisciplinary design optimization benchmark

Ir 2ollaboration wilk NASA anc the Michigan Exploration
Lao, we ceveloped a new large-scale benchmark MDO
problem, anc solved a problem with 25,000 design variables
anvd 2.2 millon slale variables by oplimizing lhe dala
doanihaded frcm a CuneSat subject «© operational zand
physcal consiraints. This problem 13 now a plugin in the

CrenMDAD open source project
| Paper] [ Preprint]
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