
Multidisciplinary Design Optimization Monolithic Architectures

Multidisciplinary Feasible (MDF) 2

x

(0)
y

t,(0)

x

⇤ 0, 7!1:
Optimization

2 : x0, x1 3 : x0, x2 4 : x0, x3 6 : x

1, 5!2:
MDA

2 : y

t

2, y
t

3 3 : y

t

3

y

⇤
1 5 : y1

2:
Analysis 1

3 : y1 4 : y1 6 : y1

y

⇤
2 5 : y2

3:
Analysis 2

4 : y2 6 : y2

y

⇤
3 5 : y3

4:
Analysis 3

6 : y3

7 : f, c

6:
Functions

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 28 / 75

Joaquim R. R. A. Martins • John T. Hwang
Multidisciplinary Design Optimization Laboratory

http://mdolab.engin.umich.edu

A Very Short Course on
Multidisciplinary Design Optimization

http://mdolab.engin.umich.edu

• 1991–1995: M.Eng. in Aeronautics, Imperial College, London, UK

• 1996–2002: M.Sc. and Ph.D. in Aeronautics and Astronautics, Stanford University

• 2002–2008: Assistant Professor, University of Toronto, Institute for Aerospace Studies

• 2008–2009: Associate Professor, University of Toronto, Institute for Aerospace Studies

• 2009–2015 : Associate Professor, University of Michigan, Dept. of Aerospace Engineering

• 2015– : Professor, University of Michigan, Dept. of Aerospace Engineering

• 2015–2016: Professeur Invité, ISAE–SUPAERO

Vitae

• 4 best papers at the AIAA Multidisciplinary Analysis and Optimization Conference (2002, 2006, 2012, 2014)

• Canada Research Chair in Multidisciplinary Optimization (2002–2009)

• Keynote speaker at the International Forum on Aeroelasticity and Structural Dynamics (Stockholm, 2007)

• Keynote speaker at the Aircraft Structural Design Conference (London, 2010)

• Associate editor for Optimization and Engineering, Structural and Multidisciplinary Optimization

• Marie Curie Fellow (2015–2016)

Bio

Highlights

UTIAS

Design
Optimization

What is Multidisciplinary Design Optimization — MDO?
4

baseline design usually requires some engineering intuition and represents an initial idea. In
the conventional design process this baseline design is analyzed in some way to determine
its performance. This could involve numerical modeling or actual building and testing. The
design is then evaluated based on the results and the designer then decides whether the
design is good enough or not. If the answer is no — which is likely to be the case for at
least the first few iterations — the designer will change the design based on its intuition,
experience or trade studies. When the design is satisfactory, the designer will arrive at the
final design.

For more complex engineering systems, there are multiple levels and thus cycles in the
design process. In aircraft design, these would correspond to the preliminary, conceptual
and detailed design stages.

The design optimization process can be pictured using the same flow chart, with mod-
ifications to some of the blocks. Instead of having the option to build a prototype, the
analysis step must be completely numerical and must not involve any input from the de-
signer. The evaluation of the design is strictly based on numerical values for the objective to
be minimized and the constraints that need to be satisfied. When a rigorous optimization
algorithm is used, the decision to finalize the design is made only when the current design
satisfies the necessary optimality conditions that ensure that no other design “close by” is
better. The changes in the design are made automatically by the optimization algorithm
and do not require the intervention of the designer. On the other hand, the designer must
decide in advance which parameters can be changed. In the design optimization process, it
is crucial that the designer formulate the optimization problem well. We will now discuss
the components of this formulation in more detail: the objective function, the constraints,
and the design variables.

Baseline
design

Specifications

Analyze or
experiment

Evaluate
performance

Change
design

Is the design
good?

Final design

No

Yes

Baseline
design

Specifications

Analyze

Evaluate
objective and
constraints

Change
design

Is the design
optimal?

Final design

No

Yes

Figure 1.1: Conventional (left) versus optimal (right) design process

12

Conventional design Optimal design

baseline design usually requires some engineering intuition and represents an initial idea. In
the conventional design process this baseline design is analyzed in some way to determine
its performance. This could involve numerical modeling or actual building and testing. The
design is then evaluated based on the results and the designer then decides whether the
design is good enough or not. If the answer is no — which is likely to be the case for at
least the first few iterations — the designer will change the design based on its intuition,
experience or trade studies. When the design is satisfactory, the designer will arrive at the
final design.

For more complex engineering systems, there are multiple levels and thus cycles in the
design process. In aircraft design, these would correspond to the preliminary, conceptual
and detailed design stages.

The design optimization process can be pictured using the same flow chart, with mod-
ifications to some of the blocks. Instead of having the option to build a prototype, the
analysis step must be completely numerical and must not involve any input from the de-
signer. The evaluation of the design is strictly based on numerical values for the objective to
be minimized and the constraints that need to be satisfied. When a rigorous optimization
algorithm is used, the decision to finalize the design is made only when the current design
satisfies the necessary optimality conditions that ensure that no other design “close by” is
better. The changes in the design are made automatically by the optimization algorithm
and do not require the intervention of the designer. On the other hand, the designer must
decide in advance which parameters can be changed. In the design optimization process, it
is crucial that the designer formulate the optimization problem well. We will now discuss
the components of this formulation in more detail: the objective function, the constraints,
and the design variables.

Baseline
design

Specifications

Analyze or
experiment

Evaluate
performance

Change
design

Is the design
good?

Final design

No

Yes

Baseline
design

Specifications

Analyze

Evaluate
objective and
constraints

Change
design

Is the design
optimal?

Final design

No

Yes

Figure 1.1: Conventional (left) versus optimal (right) design process

12

Design Variables, Objective Function, and Constraints
5

AR

S

8

16

24

6 12 18

b b
b!/ = 0.2

!/ = 0.05!/ = 0.01

Figure 4: Wing deflection/span contours (dashed) superimposed on objective function con-
tours (solid). The contour δ/b = 0.05 is the constraint boundary. Black dot shows the
constrained optimum-design minimum power point.

which is shown in Figure 4 for three values of δ/b. All points above the δ/b = 0.05 isoline
satisfy the deflection constraint (5), and hence constitute the feasible design space. The new
constrained optimum design is the point of minimum objective function which still lies in the
feasible design space.

Additional Design Variables

Most practical design problems have vastly more than the two design variables {AR, S}
assumed in the examples above. A basic rule is that any adjustable quantity which is likely
to have a strong effect on the constrained objective function should be considered as a design
variable. One such candidate is the wing taper ratio ct/cr =λ, which clearly has a powerful
effect on the tip deflection in relation (12). If λ is chosen as a new design variable, the design
space is now three dimensional as shown in Figure 5.

{AR , S , λ} (14)

"

AR

0

1

S

Figure 5: Three-variable design space. As before, each point represents a unique design.

5

[Drela, 2006]

http://www.withouthotair.com

Contents 1

1. Multidisciplinary Design Optimization
1.1 Introduction
1.2 Multidisciplinary Analysis
1.3 Extended Design Structure Matrix
1.4 Monolithic Architectures

Multidisciplinary Feasible (MDF)
Individual Discipline Feasible (IDF)
Simultaneous Analysis and Design (SAND)
The All-at-Once (AAO) Problem Statement

1.5 Distributed Architectures
Classification

1.6 Computing Coupled Derivatives

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 2 / 75

Multidisciplinary Design Optimization

Multidisciplinary Design Optimization

1. Multidisciplinary Design Optimization
1.1 Introduction
1.2 Multidisciplinary Analysis
1.3 Extended Design Structure Matrix
1.4 Monolithic Architectures
1.5 Distributed Architectures
1.6 Computing Coupled Derivatives

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 3 / 75

Multidisciplinary Design Optimization Introduction

Introduction 1
I In the last few decades, numerical models that predict the performance of

engineering systems have been developed, and many of these models are now
mature areas of research. For example . . .

I Once engineers can predict the e↵ect that changes in the design have on the
performance of a system, the next logical question is what changes in the
design produced optimal performance. The application of the numerical
optimization techniques described in the preceding chapters address this
question.

I Single-discipline optimization is in some cases quite mature, but the design
and optimization of systems that involve more than one discipline is still in its
infancy.

I When systems are composed of multiple systems, additional issues arise in
both the analysis and design optimization.

I MDO researchers think industry will not adopt MDO more widely because
they do not realize their utility.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 4 / 75

Multidisciplinary Design Optimization Introduction

Introduction 2
I Industry think that researchers are not presenting anything new, since

industry has already been doing multidisciplinary design.

I There is some truth to each of these perspectives . . .

I Real-world aerospace design problem may involve thousands of variables and
hundreds of analyses and engineers, and it is often di�cult to apply the
numerical optimization techniques and solve the mathematically correct
optimization problems.

I The kinds of problems in industry are often of much larger scale, involve
much uncertainty, and include human decisions in the loop, making them
di�cult to solve with traditional numerical optimization techniques.

I On the other hand, a better understanding of MDO by engineers in industry
is now contributing a more widespread use in practical design.

Why MDO?

I Parametric trade studies are subject to the “curse of dimensionality”.

I Iterated procedures for which convergence is not guaranteed.

I Sequential optimization that does not lead to the true optimum of the system

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 5 / 75

Multidisciplinary Design Optimization Introduction

Introduction 3
Objectives of MDO:

I Avoid di�culties associated with sequential design or partial optimization.

I Provide more e�cient and robust convergence than by simple iteration.

I Aid in the management of the design process.

Di�culties of MDO:

I Communication and translation

I Time

I Scheduling and planning

I Implementation

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 6 / 75

Multidisciplinary Design Optimization Introduction

Typical Aircraft Company Organization

Personnel hierarchy
Design process

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 7 / 75

Multidisciplinary Design Optimization Introduction

MDO Architectures
I MDO focuses on the development of strategies that use numerical analyses

and optimization techniques to enable the automation of the design process
of a multidisciplinary system.

I The big challenge: make such a strategy scalable and practical.

I An MDO architecture is a particular strategy for organizing the analysis
software, optimization software, and optimization subproblem statements to
achieve an optimal design.

I Other terms are used: “method”, “methodology”, “problem formulation”,
“strategy”, “procedure” and “algorithm”.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 8 / 75

Multidisciplinary Design Optimization Introduction

Nomenclature and Mathematical Notation 1

Symbol Definition
x Vector of design variables
y

t Vector of coupling variable targets (inputs to a discipline analysis)
y Vector of coupling variable responses (outputs from a discipline analysis)
ȳ Vector of state variables (variables used inside only one discipline analysis)
f Objective function
c Vector of design constraints
c

c Vector of consistency constraints
R Governing equations of a discipline analysis in residual form
N Number of disciplines
n() Length of given variable vector
m() Length of given constraint vector
()0 Functions or variables that are shared by more than one discipline
()

i

Functions or variables that apply only to discipline i

()⇤ Functions or variables at their optimal value

(̃) Approximation of a given function or vector of functions

(̂) Duplicates of certain variable sets distributed to other disciplines
J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 9 / 75

Multidisciplinary Design Optimization Introduction

Nomenclature and Mathematical Notation 2
I In MDO, we make the distinction between:

I Local design variables x
i

— directly a↵ect only one discipline
I Shared design variables x

0

— directly a↵ect more than one discipline.

I Full vector of design variables x =
⇥
x

T

0 , x

T

1 , . . . , x

T

N

⇤
T

I A discipline analysis solves a system of equations that computes the state
variables. Examples?

I In many formulations, independent copies of the coupling variables must be
made to allow discipline analyses to run independently and in parallel.

I These copies are also known as target variables, which we denote by a
superscript t.

I To preserve consistency between the coupling variable inputs and outputs at
the optimal solution, we define consistency constraints

c

c

i

= y

t

i

� y

i

which we add to the optimization problem formulation.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 10 / 75

Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Definition 1
I Common example used throughout this chapter to illustrate the notation and

MDO architectures.

I Suppose we want to design the wing of a business jet using low-fidelity
analysis tools.

I Model the aerodynamics using a panel method

I Model the structure as a single beam using finite elements

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 11 / 75

Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Definition 2

−30 −20 −10 0 10 20 30

0

5

10

15

y (ft)

x
(ft

)

Wi=15961.3619lbs Ws=10442.5896lbs α=2.3673o Λ=30o CL=0.13225 CD=0.014797 L/D=8.9376

0
5

10
15

−30
−20

−10
0

10
20

30
00.51

x (ft)
y (ft)

z
(ft

)

I Aerodynamic inputs: angle-of-attack (↵), wing twist distribution (�
i

)

I Aerodynamic outputs: lift (L) and the induced drag (D).

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 12 / 75

Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Definition 3
I Structural inputs: thicknesses of the beam (t

i

)

I Structural output: beam weight, which is added to a fixed weight to obtain
the total weight (W), and the maximum stresses in each finite-element (�

i

).

I In this example, we want to maximize the range of the aircraft, as given by
the Breguet range equation,

f = Range =
V

c

L

D

ln

✓
W

i

W

f

◆
.

I The multidisciplinary analysis consists in the simultaneous solution of the
following equations:

R1 = 0) A� � v(u, ↵) = 0

R2 = 0) Ku � F (�) = 0

R3 = 0) L(�) � W = 0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 13 / 75

Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Definition 4
I The complete state vector is

y =

2

4
y1

y2

y3

3

5 =

2

4
�
u

↵

3

5
.

I The angle of attack is considered a state variable here, and helps satisfy
L = W .

I The design variables are the the wing sweep (⇤), structural thicknesses (t)
and twist distribution (�).

x0 = ⇤

x =


t

�

�
,

I Sweep is a shared variable because changing the sweep has a direct e↵ect on
both the aerodynamic influence matrix and the sti↵ness matrix.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 14 / 75

Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Definition 5
I The other two sets of design variables are local to the structures and

aerodynamics, respectively.

I In later examples, we will see the options we have to optimize the wing in
this example.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 15 / 75

Multidisciplinary Design Optimization Multidisciplinary Analysis

Multidisciplinary Analysis 1
I To find the coupled state of a multidisciplinary system we need to perform a

multidisciplinary analysis — MDA.

I This is often done by repeating each disciplinary analysis until y

t

i

= y

r

i

for all
is.

Input: Design variables x

Output: Coupling variables, y

0: Initiate MDA iteration loop
repeat

1: Evaluate Analysis 1 and update y1(y2, y3)
2: Evaluate Analysis 2 and update y2(y1, y3)
3: Evaluate Analysis 3 and update y3(y1, y2)

until 4 ! 1: MDA has converged

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 16 / 75

Multidisciplinary Design Optimization Multidisciplinary Analysis

Multidisciplinary Analysis 2
I The design structure matrix (DSM) was originally developed to visualize the

interconnections between the various components of a system.

Optimization A

Aerodynamics B

Atmosphere C

Economics D

Emissions E

Loads F

Noise G

Performance H

Sizing I

Weight J

Structures K

Mission L

Reliability M

Propulsion N

System O

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

A B C D E F G H I J K L M N O

Original ordering

Optimization A

Mission L

Performance H

System O

Economics D

Reliability M

Emissions E

Noise G

Propulsion N

Atmosphere C

Aerodynamics B

Structures K

Sizing I

Loads F

Weight J

A

L

H

O

D

M

E

G

N

C

B

K

I

F

J

A L H O D M E G N C B K I F J

Improved ordering
I Fixed-point iteration, such as the Gauss–Seidel algorithm above converge

slowly and sometimes do not converge at all.

I One way to improve the disciplines, is to reorder the sequence and possibly
do some inner loops for more coupled clusters.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 17 / 75

Extended Design Structure Matrix
A Unified Description of MDO

Architectures

Motivation

• No comprehensive description of
MDO architectures in a unified
notation

• Often not enough detail when a
given MDO architecture is
described

• Flow diagrams are not
standardized

• Flow diagrams do not provide as
much information as they could
— lack of information density

Sref , AR, �i, ti Qrigid, Qflexible

�⇤0, �0, ⇥e0

Weight, CL, CD

Objective and
Constraints

Aerostructural
trim

herr, ⌅max

Endurance, ⌅i|gust, ⌅i|maneuver, cli|Vstall, and herr|40s

Flexible flight dynamics
and control

Optimizer

X

0

10

20
Y

-30

-20

-10

0

10

20

Z

0

2 m2

m2

m2

[Haghighat, Liu and Martins, 2009]

Discipline

1

System

Level

Optimizer

Optimizer

1

z 1, x1

y1

RS

f,c

z, x

f,c

~y

z, x

RS

f,c

z 1, x1

f,c

~ y2

z 1, x1

~ y2

Discipline

2

Optimizer

2
z 2, x2

y2

RS

f,c

z 2, x2

f,c

~ y1

z 2, x2

~ y1

Discipline

1

Discipline

2

1. Multidisciplinary analysis

Discipline

1

System

Level

Optimizer

Optimizer

1

z 1, x1

y1

RS

f,c

z, x

f,c

~y

z, x

RS

f,c

z 1, x1

f,c

~ y2

z 1, x1

~ y2

Discipline

2

Optimizer

2
z 2, x2

y2

RS

f,c

z 2, x2

f,c

~ y1

z 2, x2

~ y1

2. Response surface update
RSz , x ~y

Discipline

1

Discipline

2

1. Multidisciplinary analysis

Discipline

1

System

Level

Optimizer

Optimizer

1

z 1, x1

y1

RS

f,c

z, x

f,c

~y

z, x

RS

f,c

z 1, x1

f,c

~ y2

z 1, x1

~ y2

Discipline

2

Optimizer

2
z 2, x2

y2

RS

f,c

z 2, x2

f,c

~ y1

z 2, x2

~ y1

3. Concurrent subspace optimization

Discipline

1

Optimizer

1

RS

f,c

Discipline

2

Optimizer

2

RS

f,c

2. Response surface update
RSz , x ~y

Discipline

1

Discipline

2

1. Multidsiciplinary analysis

Discipline

1

System

Level

Optimizer

Optimizer

1

z 1, x1

y1

RS

f,c

z, x

f,c

~y

z, x

RS

f,c

z 1, x1

f,c

~ y2

z 1, x1

~ y2

Discipline

2

Optimizer

2
z 2, x2

y2

RS

f,c

z 2, x2

f,c

~ y1

z 2, x2

~ y1

1 MDA for each discipline

4. Concurrent multidsiciplinary analyses

3. Concurrent subspace optimization

Discipline

1

Optimizer

1

RS

f,c

Discipline

2

Optimizer

2

RS

f,c

2. Response surface update
RSz , x ~y

Discipline

1

Discipline

2

1. Multidsiciplinary analysis

Discipline

1

System

Level

Optimizer

Optimizer

1

z 1, x1

y1

RS

f,c

z, x

f,c

~y

z, x

RS

f,c

z 1, x1

f,c

~ y2

z 1, x1

~ y2

Discipline

2

Optimizer

2
z 2, x2

y2

RS

f,c

z 2, x2

f,c

~ y1

z 2, x2

~ y1

5. Response surface update

1 MDA for each discipline

4. Concurrent multidsiciplinary analyses

3. Concurrent subspace optimization

Discipline

1

Optimizer

1

RS

f,c

Discipline

2

Optimizer

2

RS

f,c

2. Response surface update
RSz , x ~y

Discipline

1

Discipline

2

1. Multidsiciplinary analysis

Discipline

1

System

Level

Optimizer

Optimizer

1

z 1, x1

y1

RS

f,c

z, x

f,c

~y

z, x

RS

f,c

z 1, x1

f,c

~ y2

z 1, x1

~ y2

Discipline

2

Optimizer

2
z 2, x2

y2

RS

f,c

z 2, x2

f,c

~ y1

z 2, x2

~ y1

6. System level optimization

5. Response surface update

1 MDA for each discipline

4. Concurrent multidsiciplinary analyses

3. Concurrent subspace optimization

Discipline

1

Optimizer

1

RS

f,c

Discipline

2

Optimizer

2

RS

f,c

2. Response surface update
RSz , x ~y

Discipline

1

Discipline

2

1. Multidsiciplinary analysis

Discipline

1

System

Level

Optimizer

Optimizer

1

z 1, x1

y1

RS

f,c

z, x

f,c

~y

z, x

RS

f,c

z 1, x1

f,c

~ y2

z 1, x1

~ y2

Discipline

2

Optimizer

2
z 2, x2

y2

RS

f,c

z 2, x2

f,c

~ y1

z 2, x2

~ y1

[Martins and Lambe, Consortium Workshop, 2009]

Notation and Problem Statement

Background
Notation and Diagrams
Architecture Examples

Conclusions

Notation and Problem Statement

minimize f0 (x, y)

with respect to x, yt, ȳ, y

subject to c0 (x, y) ⇥ 0

ci (x0, xi, yi) ⇥ 0

cci = yti � yi = 0

Ri

�
x0, xi, y

t
j �=i, ȳi, yi

�
= 0

x Design var.
y

t Coupling inputs
y Coupling outputs
ȳ State var.
f Objective
c Design constraints
c

c Consistency cons.
R Governing equations
()0 Shared data
()i Discipline i data

Convention: x = [xT
0 , x

T
1 , ..., x

T
N]T and y = [yT1 , ..., y

T
N]T

Convention: ci, cci , and Ri exist for i = 1, . . . , N

All architectures solve an equivalent reformulation of this problem

Lambe and Martins Unified MDO 4 of 15

Background
Notation and Diagrams
Architecture Examples

Conclusions

Notation and Problem Statement

minimize f0 (x, y)

with respect to x, yt, ȳ, y

subject to c0 (x, y) ⇥ 0

ci (x0, xi, yi) ⇥ 0

cci = yti � yi = 0

Ri

�
x0, xi, y

t
j �=i, ȳi, yi

�
= 0

x Design var.
y

t Coupling inputs
y Coupling outputs
ȳ State var.
f Objective
c Design constraints
c

c Consistency cons.
R Governing equations
()0 Shared data
()i Discipline i data

Convention: x = [xT
0 , x

T
1 , ..., x

T
N]T and y = [yT1 , ..., y

T
N]T

Convention: ci, cci , and Ri exist for i = 1, . . . , N

All architectures solve an equivalent reformulation of this problem

Lambe and Martins Unified MDO 4 of 15

The N2 Diagram and Design Structure Matrix

Background
Notation and Diagrams
Architecture Examples

Conclusions

The N2 Diagram / Design Structure Matrix

Optimization A

Aerodynamics B

Atmosphere C

Economics D

Emissions E

Loads F

Noise G

Performance H

Sizing I

Weight J

Structures K

Mission L

Reliability M

Propulsion N

System O

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

A B C D E F G H I J K L M N O

Analysis 1 y1 y1

y2 Analysis 2 y2

y3 y3 Analysis 3

Diagram conventions:

Components on main diagonal, coupling data on o�-diagonal nodes

Component inputs in same column, component outputs in same row

External inputs and outputs may also be included

Lambe and Martins Unified MDO 5 of 15

• Components on main diagonal, coupling data on off-diagonal nodes

• Component inputs in same column, component outputs in same row

• External inputs and outputs may also be included

Analysis 1 y1 y1

y2 Analysis 2 y2

y3 y3 Analysis 3

1

Extending the DSM syntax:
A Gauss–Seidel Multidisciplinary Analysis Example

Background
Notation and Diagrams
Architecture Examples

Conclusions

DSM Extensions - A Multidisciplinary Analysis

yt x0, x1 x0, x2 x0, x3

(no data) 0,4�1:
MDA

1 : yt2, y
t
3 2 : yt3

y1 4 : y1
1:

Analysis 1
2 : y1 3 : y1

y2 4 : y2
2:

Analysis 2
3 : y2

y3 4 : y3
3:

Analysis 3

Lambe and Martins Unified MDO 8 of 15

Variable dependency
Variables

Initial input
variable row

Final output
variable column

Driver

Process flow

A Jacobi Multidisciplinary Analysis Example

y

t
x0, x1 x0, x2 x0, x3

(no data)

0,2!1:

MDA

1 : y

t
2, y

t
3 1 : y

t
1, y

t
3 1 : y

t
1, y

t
2

y1 2 : y1
1:

Analysis 1

y2 2 : y2
1:

Analysis 2

y3 2 : y3
1:

Analysis 3

Background
Notation and Diagrams
Architecture Examples

Conclusions

DSM Extensions - An Optimization Problem

x

x� 0,2�1:
Optimization 1 : x 1 : x

2 : f
1:

Objective

2 : c
1:

Constraints

Extensions for visualization purposes:

“Drivers” are presented using a distinct block shape (rounded
rectangle)

Process flow displayed by a di�erent line style (thin, black) than
data dependency (thick, gray)

Lambe and Martins Unified MDO 7 of 15

An Optimization Problem

• Follow sequence of numbers and thin black lines

• When number or index is repeated, procedures can be parallelized

• Close the loops

XDSM http://mdolab.engin.umich.edu/content/xdsm-overview

http://mdolab.engin.umich.edu/content/xdsm-overview

Sequential
Optimization vs. MDO

Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential
Design vs. MDO 1

I One commonly used approach to design is to perform a sequential
“optimization” approach, which consists in optimizing each discipline in
sequence:
1. For example, we could start by optimizing the aerodynamics,

minimize D (↵, �

i

)

w.r.t. ↵, �

i

s.t. L (↵, �

i

) = W

2. Once the aerodynamic optimization has converged, the twist distribution and
the forces are fixed

3. Then we optimize the structure by minimizing weight subject to stress
constraints at the maneuver condition, i.e.,

minimize W (t

i

)

w.r.t. t

i

s.t. �

j

(t

i

)  �yield

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 21 / 75

Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential
Design vs. MDO 2

4. Repeat until this sequence has converged.

�0, t0

�

⇤
, t

⇤ Iterator

0

7!1
1,3

8

� Optimization

1

3!2
2,4

�

L/D Aerodynamics

2
3

F

t

Optimization

4

6!5
5

7
t

u

W, � � �

y Structures

5
6

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 22 / 75

Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential
Design vs. MDO 3

I The MDO procedure di↵ers from the sequential approach in that it considers
all variables simultaneously

minimize Range (↵, �

i

, t

i

)

w.r.t. ↵, �

i

, t

i

s.t. �yield � �

j

(t
i

) � 0

L (↵, �

i

) � W = 0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 23 / 75

Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential
Design vs. MDO 4

�0, t0 w0, u0

�

⇤
, t

⇤ Optimization

0
7

6!1
1

5 : �, t 2 : � 3 : t

6 : R, � � �

y

Functions
6

5

MDA

1
5

4!2
2

2 : u

5 : w 4 : w

Aerodynamics

2

3
3 : w

5 : u 4 : u Structures

3
4

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 24 / 75

Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential
Design vs. MDO 5

0 5 10 15 20

−10

−5

0

5

10

Spanwise Distance (m)
Tw

is
t (

de
gr

ee
s)

Jigtwist
Deflected

0 5 10 15 20
0.02

0.03

0.04

0.05

0.06

Spanwise Distance (m)

Th
ic

kn
es

s
(m

)

0 5 10 15 20
1

2

3

4

5
x 104

Spanwise Distance (m)

Li
ft

(N
)

Elliptical

Sequential MDF AS

1

−10 −8 −6 −4 −2 0 2
0

0.05

0.1

0.15

0.2

0.25

3000 3000 3000

4000
4000 4000

5000
5000 5000

6000
6000 6000

7000

Jig Twist (degrees)

T
h

ic
kn

e
ss

 (
m

)

Range (km)

Sequential

MDO

Stress constraint

Aerodynamic optima

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 25 / 75

−10 −8 −6 −4 −2 0 2
0

0.05

0.1

0.15

0.2

0.25

3000 3000 3000

4000
4000 4000

5000
5000 5000

6000
6000 6000

7000

Jig Twist (degrees)

T
h

ic
kn

e
ss

 (
m

)

Range (km)

Sequential

MDO

Stress constraint

Aerodynamic optima

[Chittick and Martins, SMO, 2008]

http://mdolab.engin.umich.edu/content/asymmetric-suboptimization-approach-aerostructural-optimization-0

Monolithic MDO
Architectures

Multidisciplinary Design Optimization Monolithic Architectures

Monolithic Architectures
I Monolithic architectures solve the MDO problem by casting it as single

optimization problem.

I Distributed architectures, on the other hand, decompose the overall problem
into smaller ones.

I Monolithic architectures include:
I Multidisciplinary Feasible — MDF
I Individual Discipline Feasible — IDF
I Simultaneous Analysis and Design — SAND
I All-At-Once — AAO

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 26 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Multidisciplinary Feasible (MDF) 1
I The MDF architecture is the most intuitive for engineers.

I The optimization problem formulation is identical to the single discipline
case, except the disciplinary analysis is replace by an MDA

minimize f0 (x, y (x, y))

with respect to x

subject to c0 (x, y (x, y)) � 0

c

i

(x0, xi

, y

i

(x0, xi

, y

j 6=i

)) � 0 for i = 1, . . . , N.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 27 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Multidisciplinary Feasible (MDF) 2

x

(0)
y

t,(0)

x

⇤ 0, 7!1:
Optimization

2 : x0, x1 3 : x0, x2 4 : x0, x3 6 : x

1, 5!2:
MDA

2 : y

t

2, y
t

3 3 : y

t

3

y

⇤
1 5 : y1

2:
Analysis 1

3 : y1 4 : y1 6 : y1

y

⇤
2 5 : y2

3:
Analysis 2

4 : y2 6 : y2

y

⇤
3 5 : y3

4:
Analysis 3

6 : y3

7 : f, c

6:
Functions

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 28 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Multidisciplinary Feasible (MDF) 3
I Advantages:

I Optimization problem is as small as it can be for a monolithic architecture
I Always returns a system design that satisfies the consistency constraints, even

if the optimization process is terminated early — good from the practical
engineering point of view

I Disadvantages:
I Intermediate results do not necessarily satisfy the optimization constraints
I Developing the MDA procedure might be time consuming, if not already in

place
I Gradients of the coupled system more challenging to compute (more in later

section)

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 29 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Example: Aerostructural Optimization with MDF

minimize � R

w.r.t. ⇤, �, t

s.t. �yield � �

i

(u) � 0

where the aerostructural analysis is as before:

A� � v(u, ↵) = 0

K(t, ⇤)u � F (�) = 0

L(�) � W (t) = 0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 30 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Individual Discipline Feasible (IDF) 1

The IDF architecture decouples the MDA, adding consistency constraints, and
giving the optimizer control of the coupling variables.

minimize f0

�
x, y

�
x, y

t

��

with respect to x, y

t

subject to c0

�
x, y

�
x, y

t

��
� 0

c

i

�
x0, xi

, y

i

�
x0, xi

, y

t

j 6=i

��
� 0 for i = 1, . . . , N

c

c

i

= y

t

i

� y

i

�
x0, xi

, y

t

j 6=i

�
= 0 for i = 1, . . . , N.

I Advantages:
I Optimizer typically converges the multidisciplinary feasibility better than

fixed-point MDA iterations

I Disadvantages:
I Problem is potentially much larger than MDF, depending on the number of

coupling variables
I Gradient computation can be costly

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 31 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Individual Discipline Feasible (IDF) 2
I The large problem size can be mitigated to some extent by careful selection

of the disciplinary variable partitions or aggregation of the coupling variables
to reduce information transfer between disciplines.

x

(0)
, y

t,(0)

x

⇤ 0,3!1:
Optimization

1 : x0, xi

, y

t

j 6=i

2 : x, y

t

y

⇤
i

1:
Analysis i

2 : y

i

3 : f, c, c

c

2:
Functions

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 32 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Example: Aerostructural Optimization Using IDF

minimize � R

w.r.t. ⇤, �, t, �t

, ↵

t

, u

t

s.t. �yield � �

i

� 0

�t � � = 0

↵

t � ↵ = 0

u

t � u = 0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 33 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Simultaneous Analysis and Design (SAND) 1
I SAND makes no distinction between disciplines, and can also be applied to

single discipline problems.

I The governing equations are constraints at the optimizer level.

minimize f0 (x, y)

with respect to x, y, ȳ

subject to c0 (x, y) � 0

c

i

(x0, xi

, y

i

) � 0 for i = 1, . . . , N

R
i

(x0, xi

, y, ȳ

i

) = 0 for i = 1, . . . , N.

I Advantages:
I If implemented well, can be the most e�cient architecture

I Disadvantages:
I Intermediate results do not even satisfy the governing equations
I Di�cult or impossible to implement for “black-box” components

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 34 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Simultaneous Analysis and Design (SAND) 2

x

(0)
, y

(0)
, ȳ

(0)

x

⇤
, y

⇤ 0,2!1:
Optimization

1 : x, y 1 : x0, xi

, y, ȳ

i

2 : f, c

1:
Functions

2 : R
i

1:
Residual i

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 35 / 75

Multidisciplinary Design Optimization Monolithic Architectures

Aerostructural Optimization Using SAND 1

minimize � R

w.r.t. ⇤, �, t, �, ↵, u

s.t. �yield � �

i

(u) � 0

A� = v(u, ↵)

K(t)u = f(�)

L(�) � W (t) = 0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 36 / 75

Multidisciplinary Design Optimization Monolithic Architectures

The All-at-Once (AAO) Problem Statement 1
I AAO is not strictly an architecture, as it is not practical to solve a problem of

this form: the consistency constraints are linear and can be eliminated,
leading to SAND.

I Some inconsistency in the name, in the literature

I We present AAO for completeness, and to relate this to the other monolithic
architectures.

minimize f0 (x, y) +
NX

i=1

f

i

(x0, xi

, y

i

)

with respect to x, y

t

, y, ȳ

subject to c0 (x, y) � 0

c

i

(x0, xi

, y

i

) � 0 for i = 1, . . . , N

c

c

i

= y

t

i

� y

i

= 0 for i = 1, . . . , N

R
i

�
x0, xi

, y

t

j 6=i

, ȳ

i

, y

i

�
= 0 for i = 1, . . . , N.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 37 / 75

Multidisciplinary Design Optimization Monolithic Architectures

The All-at-Once (AAO) Problem Statement 2
I As we can see, it includes all the constraints that other monolithic

architectures eliminated.

x

(0)
, y

t,(0)
, y

(0)
, ȳ

(0)

x

⇤
, y

⇤ 0, 2!1:
Optimization 1 : x, y, y

t 1 : x0, xi

, y

i

, y

t

j 6=i

, ȳ

i

2 : f, c, c

c

1:
Functions

2 : R
i

1:
Residual i

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 38 / 75

Multidisciplinary Design Optimization Monolithic Architectures

The All-at-Once (AAO) Problem Statement 3

AAO SAND

IDF MDF

Monolithic

Distributed MDF

CSSO: When converging the multidisciplinary
analysis, replace each individual discipline anal-
ysis with a surrogate model. The solutions of
the disciplinary subproblems are used as sam-

ple points to update the surrogate models.

BLISS: Use global sensitivity (gradient) infor-
mation from the multidisciplinary analysis to
construct a linear subproblem for each disci-
pline to select the local design variables. Use

post-optimality data from the solutions of
these subproblems to form another linear sub-
problem to select the shared design variables.

MDOIS: This architecture only applies to MDO
problems with no shared objectives, constraints,

or design variables. Form and solve separate
subproblems for each discipline assuming fixed

coupling information. Once the subprob-
lems have been solved use a multidisciplinary
analysis to update the coupling information.

ASO: Allow some disciplines to solve an op-
timization subproblem within the multi-

disciplinary analysis phase of the standard
MDF architecture. Post-optimality informa-
tion from the discipline subproblems may be
used to help converge the system subproblem.

Distributed IDF

Multilevel

CO: Make a separate copy of the shared variables for each discipline and add
consistency constraints for these new variables. Form a subproblem for each
discipline to minimize the di�erence between the shared and local variable
information subject to local constraints. An additional “system” subprob-
lem minimizes the objective function subject to system-level constraints.

BLISS-2000: Form and solve a subproblem for each discipline to mini-
mize the objective function with respect to local design variables subject

to local constraints. Update a surrogate model to estimate the influ-
ence of the shared variable choices on the local optima. Finally, form

and solve a system subproblem to minimize the objective function with
respect to the shared design and coupling variables subject to shared de-
sign and consistency constraints, considering the disciplinary preferences.

QSD: Assign each discipline a “budget” for a local objective and ask the
disciplines to maximize the margin (i.e. slack) in their local constraints
and the budgeted objective. Form and solve a system subproblem to

minimize a shared objective and the budgets of each discipline subject to
shared design constraints and positivity of the margin in each discipline.

Penalty

ATC: Make a separate copy of the shared variables for each discipline
and add consistency constraints for these new variables. Relax the con-
sistency constraints using a penalty function. Form and solve indepen-
dent system and discipline subproblems based on the relaxed problem.

When all problems have converged, increase the penalty weights as neces-
sary and solve the subproblems again to achieve the desired consistency.

IPD/EPD: This architecture only applies to MDO problems with
no shared objectives or constraints. Like ATC, make copies of

shared variables for every discipline subproblem and relax the con-
sistency constraints with a penalty function. Unlike ATC, exploit
the simple structure of the disciplinary subproblems to compute
post-optimality information to help solve the system subproblem.

ECO: Make copies of shared design variables, as in CO. Form and
solve subproblems in which each discipline minimizes a quadratic
approximation of the design objective subject to local constraints
and linear models of nonlocal constraints. Choose shared vari-
ables by solving a system subproblem to minimize the total vi-
olation of the consistency constraints across the whole system.

Remove c

c

, y

t

Remove
R, y, ȳ

Remove
R, y, ȳ

Remove c

c

, y

t

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 39 / 75

AAO SAND

IDF MDF

Monolithic

minimize f0 (x, y) +

NX

i=1

fi (x0, xi, yi)

with respect to x, y

t
, y, ȳ

subject to c0 (x, y) � 0

ci (x0, xi, yi) � 0 for i = 1, . . . , N

c

c
i = y

t
i � yi = 0 for i = 1, . . . , N

Ri

�
x0, xi, y

t
j 6=i, ȳi, yi

�
= 0 for i = 1, . . . , N

Distributed MDF

CSSO: In system subproblem, disciplinary anal-
yses are replaced by surrogate models. Discipline
subproblems are solved using surrogates for the other
disciplines, and the solutions from these discipline
subproblems are used to update the surrogate mod-
els.

BLISS: Coupled derivatives of the multidisci-
plinary analysis are used to construct linear subprob-
lems for each discipline with respect to local design
variables. Post-optimality derivatives from the so-
lutions of these subproblems are computed to form
the system linear subproblem, which is solved with
respect to shared design variables.

MDOIS: Applicable to MDO problems with no
shared objectives, constraints, or design variables.
Discipline subproblems are solved independently as-
suming fixed coupling variables, and then a multi-
disciplinary analysis is performed to update the cou-
pling.

ASO: System subproblem is like that of MDF, but
some disciplines solve a discipline optimization sub-
problem within the multidisciplinary analysis with
respect to local variables subject to local constraints.
Coupled post-optimality derivatives from the disci-
pline subproblems are computed to guide the system
subproblem.

Distributed IDF

Multilevel

CO: Copies of the shared variables are created for
each discipline, together with corresponding consistency
constraints. Discipline subproblems minimize di↵erence
between the copies of shared and local variables sub-
ject to local constraints. System subproblem minimizes
objective subject to shared constraints subject to con-
sistency constraints.

BLISS-2000: Discipline subproblems minimize
the objective with respect to local variables subject to
local constraints. A surrogate model of the local op-
tima with respect to the shared variables is maintained.
Then, system subproblem minimizes objective with re-
spect to shared design and coupling variables subject to
shared design and consistency constraints, considering
the disciplinary preferences.

QSD: Each discipline is assigned a “budget” for a lo-
cal objective and the discipline problems maximize the
margin in their local constraints and the budgeted ob-
jective. System subproblem minimizes a shared objec-
tive and the budgets of each discipline subject to shared
design constraints and positivity of the margin in each
discipline.

Penalty

ATC: Copies of the shared variables are used in disci-
pline subproblems together with the corresponding con-
sistency constraints. These consistency constraints are
relaxed using a penalty function. System and discipline
subproblems solve their respective relaxed problem in-
dependently. Penalty weights are increased until the
desired consistency is achieved.

IPD/EPD: Applicable to MDO problems with no
shared objectives or constraints. Like ATC, copies of
shared variables are used for every discipline subprob-
lem and the consistency constraints are relaxed with a
penalty function. Unlike ATC, the simple structure of
the disciplinary subproblems is exploited to compute
post-optimality sensitivities to guide the system sub-
problem.

ECO: As in CO, copies of the shared design vari-
ables are used. Disciplinary subproblems minimize
quadratic approximations of the objective subject to lo-
cal constraints and linear models of nonlocal constraints.
Shared variables are determined by the system subprob-
lem, which minimizes the total violation of all consis-
tency constraints.

Remove c

c
, y

t

Remove
R, y, ȳ

Remove
R, y, ȳ

Remove c

c
, y

t

Figure 7. Classification and summary of the MDO architectures.

16
of53

A
m

erican
Institute

ofA
eronautics

and
A

stronautics

[Martins and Lambe, “MDO: A Survey of Architectures”, AIAAJ, 2013]

http://mdolab.engin.umich.edu/content/multidisciplinary-design-optimization-survey-architectures-1

Distributed MDO
Architectures

Multidisciplinary Design Optimization Distributed Architectures

Distributed Architectures
I Monolithic MDO architectures solve a single optimization problem

I Distributed MDO architectures decompose the original problem into multiple
optimization problems

I Some problems have a special structure and can be e�ciently decomposed,
but that is usually not the case

I In reality, the primary motivation for decomposing the MDO problem comes
from the structure of the engineering design environment

I Typical industrial practice involves breaking up the design of a large system
and distributing aspects of that design to specific engineering groups.

I These groups may be geographically distributed and may only communicate
infrequently.

I In addition, these groups typically like to retain control of their own design
procedures and make use of in-house expertise

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 40 / 75

Multidisciplinary Design Optimization Distributed Architectures

Classification of MDO Architectures

AAO SAND

IDF MDF

Monolithic

CSSO

BLISS

MDOIS

ASO

Distributed MDF

QSD

CO

BLISS-2000ATC

IPD/EPD

ECO

Distributed IDF

Penalty Multilevel

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 41 / 75

AAO SAND

IDF MDF

Monolithic

minimize f0 (x, y) +

NX

i=1

fi (x0, xi, yi)

with respect to x, y

t
, y, ȳ

subject to c0 (x, y) � 0

ci (x0, xi, yi) � 0 for i = 1, . . . , N

c

c
i = y

t
i � yi = 0 for i = 1, . . . , N

Ri

�
x0, xi, y

t
j 6=i, ȳi, yi

�
= 0 for i = 1, . . . , N

Distributed MDF

CSSO: In system subproblem, disciplinary anal-
yses are replaced by surrogate models. Discipline
subproblems are solved using surrogates for the other
disciplines, and the solutions from these discipline
subproblems are used to update the surrogate mod-
els.

BLISS: Coupled derivatives of the multidisci-
plinary analysis are used to construct linear subprob-
lems for each discipline with respect to local design
variables. Post-optimality derivatives from the so-
lutions of these subproblems are computed to form
the system linear subproblem, which is solved with
respect to shared design variables.

MDOIS: Applicable to MDO problems with no
shared objectives, constraints, or design variables.
Discipline subproblems are solved independently as-
suming fixed coupling variables, and then a multi-
disciplinary analysis is performed to update the cou-
pling.

ASO: System subproblem is like that of MDF, but
some disciplines solve a discipline optimization sub-
problem within the multidisciplinary analysis with
respect to local variables subject to local constraints.
Coupled post-optimality derivatives from the disci-
pline subproblems are computed to guide the system
subproblem.

Distributed IDF

Multilevel

CO: Copies of the shared variables are created for
each discipline, together with corresponding consistency
constraints. Discipline subproblems minimize di↵erence
between the copies of shared and local variables sub-
ject to local constraints. System subproblem minimizes
objective subject to shared constraints subject to con-
sistency constraints.

BLISS-2000: Discipline subproblems minimize
the objective with respect to local variables subject to
local constraints. A surrogate model of the local op-
tima with respect to the shared variables is maintained.
Then, system subproblem minimizes objective with re-
spect to shared design and coupling variables subject to
shared design and consistency constraints, considering
the disciplinary preferences.

QSD: Each discipline is assigned a “budget” for a lo-
cal objective and the discipline problems maximize the
margin in their local constraints and the budgeted ob-
jective. System subproblem minimizes a shared objec-
tive and the budgets of each discipline subject to shared
design constraints and positivity of the margin in each
discipline.

Penalty

ATC: Copies of the shared variables are used in disci-
pline subproblems together with the corresponding con-
sistency constraints. These consistency constraints are
relaxed using a penalty function. System and discipline
subproblems solve their respective relaxed problem in-
dependently. Penalty weights are increased until the
desired consistency is achieved.

IPD/EPD: Applicable to MDO problems with no
shared objectives or constraints. Like ATC, copies of
shared variables are used for every discipline subprob-
lem and the consistency constraints are relaxed with a
penalty function. Unlike ATC, the simple structure of
the disciplinary subproblems is exploited to compute
post-optimality sensitivities to guide the system sub-
problem.

ECO: As in CO, copies of the shared design vari-
ables are used. Disciplinary subproblems minimize
quadratic approximations of the objective subject to lo-
cal constraints and linear models of nonlocal constraints.
Shared variables are determined by the system subprob-
lem, which minimizes the total violation of all consis-
tency constraints.

Remove c

c
, y

t

Remove
R, y, ȳ

Remove
R, y, ȳ

Remove c

c
, y

t

Figure 7. Classification and summary of the MDO architectures.

16
of53

A
m

erican
Institute

ofA
eronautics

and
A

stronautics

[Martins and Lambe, “MDO: A Survey of Architectures”, AIAAJ, 2013]

http://mdolab.engin.umich.edu/content/multidisciplinary-design-optimization-survey-architectures-1

Multidisciplinary Design Optimization Distributed Architectures

Concurrent Subspace Optimization (CSSO) 1

The CSSO system subproblem is given by

minimize f0 (x, ỹ (x, ỹ))

with respect to x

subject to c0 (x, ỹ (x, ỹ)) � 0

c

i

(x0, xi

, ỹ

i

(x0, xi

, ỹ

j 6=i

)) � 0 for i = 1, . . . , N

and the discipline i subproblem is given by

minimize f0 (x, y

i

(x
i

, ỹ

j 6=i

) , ỹ

j 6=i

)

with respect to x0, xi

subject to c0 (x, ỹ (x, ỹ)) � 0

c

i

(x0, xi

, y

i

(x0, xi

, ỹ

j 6=i

)) � 0

c

j

(x0, ỹj

(x0, ỹ)) � 0 for j = 1, . . . , N j 6= i.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 42 / 75

Multidisciplinary Design Optimization Distributed Architectures

Concurrent Subspace Optimization (CSSO) 2
x

(0)
x

(0)
, y

t,(0)
x

(0)
x

(0)

(no data)
0,25!1:

Convergence
Check

1,6!2:
Initial DOE

2 : y

t 5 : x0, xi

3 : x0, xi

13,18!14:
Discipline

DOE
14 : y

t 17 : x0, xi

15 : x0, xi

2,4!3,14,16!15:
Exact MDA

3, 15 : y

t

j 6=i

x

⇤ 24 : x 1 : x

19,24!20
System

Optimization
23 : x 7 : x 21 : x

24 : f, c

11,23:
All Functions

12 : f, c

20,22!21:
Metamodel

MDA

21 : ỹ

t

j 6=i

13 : x 11 : x

7,12!8:
Optimization i

9 : x0, xj 6=i

9 : x0, xi

8,10!9:
Local MDA i

9 : y

t 9 : y

t

j 6=i

y

⇤
i

1 : ỹ

i

13 : ỹ

j 6=i

11 : ỹ

j 6=i

23 : ỹ

i

22 : ỹ

i

10 : ỹ

j 6=i

5,9,17,21:
Analysis i

Metamodel

13 : y

i

3, 15 : y

i

11 : y

i

10 : y

i

5, 17 : y

i

3,9,15:
Analysis i

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 43 / 75

Multidisciplinary Design Optimization Distributed Architectures

CSSO Algorithm

Input: Initial design variables x

Output: Optimal variables x

⇤, objective function f

⇤, and constraint values c

⇤

0: Initiate main CSSO iteration
repeat

1: Initiate a design of experiments (DOE) to generate design points
for Each DOE point do

2: Initiate an MDA that uses exact disciplinary information
repeat

3: Evaluate discipline analyses
4: Update coupling variables y

until 4 ! 3: MDA has converged
5: Update the disciplinary surrogate models with the latest design

end for 6 ! 2
7: Initiate independent disciplinary optimizations (in parallel)
for Each discipline i do

repeat
8: Initiate an MDA with exact coupling variables for discipline i and

approximate coupling variables for the other disciplines
repeat

9: Evaluate discipline i outputs y

i

, and surrogate models for the
other disciplines, ỹ

j 6=i

until 10 ! 9: MDA has converged
11: Compute objective f0 and constraint functions c using current

data
until 12 ! 8: Disciplinary optimization i has converged

end for
13: Initiate a DOE that uses the subproblem solutions as sample points
for Each subproblem solution i do

14: Initiate an MDA that uses exact disciplinary information
repeat

15: Evaluate discipline analyses.
until 16 ! 15 MDA has converged
17: Update the disciplinary surrogate models with the newest design

end for 18 ! 14
19: Initiate system-level optimization
repeat

20: Initiate an MDA that uses only surrogate model information
repeat

21: Evaluate disciplinary surrogate models
until 22 ! 21: MDA has converged
23: Compute objective f0, and constraint function values c

until 24 ! 20: System level problem has converged
until 25 ! 1: CSSO has converged

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 44 / 75

Multidisciplinary Design Optimization Distributed Architectures

Collaborative Optimization (CO) 1

The CO2 system subproblem is given by:

minimize f0

�
x0, x̂1, . . . , x̂N

, y

t

�

with respect to x0, x̂1, . . . , x̂N

, y

t

subject to c0

�
x0, x̂1, . . . , x̂N

, y

t

�
� 0

J

⇤
i

= ||x̂0i

� x0||22 + ||x̂
i

� x

i

||22+
||yt

i

� y

i

�
x̂0i

, x

i

, y

t

j 6=i

�
||22 = 0 for i = 1, . . . , N

where x̂0i

are duplicates of the global design variables passed to (and manipulated
by) discipline i and x̂

i

are duplicates of the local design variables passed to the
system subproblem.
The discipline i subproblem in both CO1 and CO2 is

minimize J

i

�
x̂0i

, x

i

, y

i

�
x̂0i

, x

i

, y

t

j 6=i

��

with respect to x̂0i

, x

i

subject to c

i

�
x̂0i

, x

i

, y

i

�
x̂0i

, x

i

, y

t

j 6=i

��
� 0.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 46 / 75

Multidisciplinary Design Optimization Distributed Architectures

Collaborative Optimization (CO) 2

x

(0)
0 , x̂

(0)
1···N , y

t,(0)
x̂

(0)
0i

, x

(0)
i

x

⇤
0

0, 2!1:
System

Optimization
1 : x0, x̂1···N , y

t 1.1 : y

t

j 6=i

1.2 : x0, x̂i

, y

t

2 : f0, c0

1:
System

Functions

x

⇤
i

1.0, 1.3!1.1:
Optimization i

1.1 : x̂0i

, x

i

1.2 : x̂0i

, x

i

y

⇤
i

1.1:
Analysis i

1.2 : y

i

2 : J

⇤
i

1.3 : f

i

, c

i

, J

i

1.2:
Discipline i

Functions

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 47 / 75

Multidisciplinary Design Optimization Distributed Architectures

CO Algorithm 1

Input: Initial design variables x

Output: Optimal variables x

⇤, objective function f

⇤, and constraint values c

⇤

0: Initiate system optimization iteration
repeat

1: Compute system subproblem objectives and constraints
for Each discipline i (in parallel) do

1.0: Initiate disciplinary subproblem optimization
repeat

1.1: Evaluate disciplinary analysis
1.2: Compute disciplinary subproblem objective and constraints
1.3: Compute new disciplinary subproblem design point and J

i

until 1.3 ! 1.1: Optimization i has converged
end for
2: Compute a new system subproblem design point

until 2 ! 1: System optimization has converged

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 48 / 75

Multidisciplinary Design Optimization Distributed Architectures

Aerostructural Optimization Using CO 1

System-level problem:

minimize � R

w.r.t. ⇤t

, �t

, ↵

t

, u

t

, W

t

s.t. J

⇤
1  10�6

J

⇤
2  10�6

Aerodynamics subproblem:

minimize J1 =

✓
1 � ⇤

⇤t

◆2

+
X ✓

1 � �
i

�t

i

◆2

+
⇣
1 � ↵

↵

t

⌘2
+

✓
1 � W

W

t

◆2

w.r.t. ⇤, �, ↵

s.t. L � W = 0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 49 / 75

Multidisciplinary Design Optimization Distributed Architectures

Aerostructural Optimization Using CO 2
Structures subproblem:

minimize J2 =

✓
1 � ⇤

⇤t

◆2

+
X ✓

1 � u

i

u

t

i

◆2

w.r.t. ⇤, t

s.t. �yield � �

i

� 0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 50 / 75

Multidisciplinary Design Optimization Distributed Architectures

Bilevel Integrated System Synthesis (BLISS) 1

The system level subproblem is formulated as

minimize (f⇤
0)0 +

✓
df

⇤
0

dx0

◆
�x0

with respect to �x0

subject to (c⇤
0)0 +

✓
dc

⇤
0

dx0

◆
�x0 � 0

(c⇤
i

)0 +

✓
dc

⇤
i

dx0

◆
�x0 � 0 for i = 1, . . . , N

�x0L

 �x0  �x0U

.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 51 / 75

Multidisciplinary Design Optimization Distributed Architectures

Bilevel Integrated System Synthesis (BLISS) 2
The discipline i subproblem is given by

minimize (f0)0 +

✓
df0

dx

i

◆
�x

i

with respect to �x

i

subject to (c0)0 +

✓
dc0

dx

i

◆
�x

i

� 0

(c
i

)0 +

✓
dc

i

dx

i

◆
�x

i

� 0

�x

iL

 �x

i

 �x

iU

.

Note the extra set of constraints in both system and discipline subproblems
denoting the design variables bounds.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 52 / 75

Multidisciplinary Design Optimization Distributed Architectures

Bilevel Integrated System Synthesis (BLISS) 3
x

(0)
y

t,(0)
x

(0)
0 x

(0)
i

(no data)
0,11!1:

Convergence
Check

1,3!2:
MDA

6 : y

t

j 6=i

6, 9 : y

t

j 6=i

6 : y

t

j 6=i

2, 5 : y

t

j 6=i

x

⇤
0 11 : x0

8,10:
System

Optimization
6, 9 : x0 6, 9 : x0 9 : x0 6 : x0 2, 5 : x0

x

⇤
i

11 : x

i

4,7:
Optimization i

6, 9 : x

i

6, 9 : x

i

9 : x

i

6 : x

i

2, 5 : x

i

10 : f0, c0 7 : f0, c0

6,9:
System

Functions

10 : f

i

, c

i

7 : f

i

, c

i

6,9:
Discipline i

Functions

10 : df/dx0, dc/ dx0

9:
Shared
Variable

Derivatives

7 : df0,i

/ dx

i

, dc0,i

/ dx

i

6:
Discipline i

Variable
Derivatives

y

⇤
i

3 : y

i

6, 9 : y

i

6, 9 : y

i

9 : y

i

6 : y

i

2,5:
Analysis i

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 53 / 75

Multidisciplinary Design Optimization Distributed Architectures

BLISS Algorithm

Input: Initial design variables x

Output: Optimal variables x

⇤, objective function f

⇤, and constraint values c

⇤

0: Initiate system optimization
repeat

1: Initiate MDA
repeat

2: Evaluate discipline analyses
3: Update coupling variables

until 3 ! 2: MDA has converged
4: Initiate parallel discipline optimizations
for Each discipline i do

5: Evaluate discipline analysis
6: Compute objective and constraint function values and derivatives with

respect to local design variables
7: Compute the optimal solutions for the disciplinary subproblem

end for
8: Initiate system optimization
9: Compute objective and constraint function values and derivatives with

respect to shared design variables using post-optimality analysis
10: Compute optimal solution to system subproblem

until 11 ! 1: System optimization has converged

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 54 / 75

Multidisciplinary Design Optimization Distributed Architectures

Analytical Target Cascading (ATC) 1

The ATC system subproblem is given by

minimize f0

�
x, y

t

�
+

NX

i=1

�
i

�
x̂0i

� x0, y
t

i

� y

i

�
x0, xi

, y

t

��
+

�0

�
c0

�
x, y

t

��

with respect to x0, y
t

,

where �0 is a penalty relaxation of the global design constraints and �
i

is a
penalty relaxation of the discipline i consistency constraints. The i

th discipline
subproblem is:

minimize f0

�
x̂0i

, x

i

, y

i

�
x̂0i

, x

i

, y

t

j 6=i

�
, y

t

j 6=i

�
+ f

i

�
x̂0i

, x

i

, y

i

�
x̂0i

, x

i

, y

t

j 6=i

��
+

�
i

�
y

t

i

� y

i

�
x̂0i

, x

i

, y

t

j 6=i

�
, x̂0i

� x0

�
+

�0

�
c0

�
x̂0i

, x

i

, y

i

�
x̂0i

, x

i

, y

t

j 6=i

�
, y

t

j 6=i

��

with respect to x̂0i

, x

i

subject to c

i

�
x̂0i

, x

i

, y

i

�
x̂0i

, x

i

, y

t

j 6=i

��
� 0.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 55 / 75

Multidisciplinary Design Optimization Distributed Architectures

Analytical Target Cascading (ATC) 2

w

(0)
x

(0)
0 , y

t,(0)
x̂

(0)
0i

, x

(0)
i

(no data)
0,8!1:

w update 6 : w

3 : w

i

x

⇤
0

5,7!6:
System

Optimization
6 : x0, y

t 3 : x0, y
t 2 : y

t

j 6=i

7 : f0, �0···N

6:
System and

Penalty
Functions

x

⇤
i

6 : x̂0i

, x

i

1,4!2:
Optimization i

3 : x̂0i

, x

i

2 : x̂0i

, x

i

4 : f

i

, c

i

, �0, �i

3:
Discipline i

and Penalty
Functions

y

⇤
i

6 : y

i

3 : y

i

2:
Analysis i

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 56 / 75

Multidisciplinary Design Optimization Distributed Architectures

ATC Algorithm

Input: Initial design variables x

Output: Optimal variables x

⇤, objective function f

⇤, and constraint values c

⇤

0: Initiate main ATC iteration
repeat

for Each discipline i do
1: Initiate discipline optimizer
repeat

2: Evaluate disciplinary analysis
3: Compute discipline objective and constraint functions and penalty

function values
4: Update discipline design variables

until 4 ! 2: Discipline optimization has converged
end for
5: Initiate system optimizer
repeat

6: Compute system objective, constraints, and all penalty functions
7: Update system design variables and coupling targets.

until 7 ! 6: System optimization has converged
8: Update penalty weights

until 8 ! 1: Penalty weights are large enough

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 57 / 75

Multidisciplinary Design Optimization Distributed Architectures

Asymmetric Subspace Optimization (ASO) 1

The system subproblem in ASO is

minimize f0 (x, y (x, y)) +
X

k

f

k

(x0, xk

, y

k

(x0, xk

, y

j 6=k

))

with respect to x0, xk

subject to c0 (x, y (x, y)) � 0

c

k

(x0, xk

, y

k

(x0, xk

, y

j 6=k

)) � 0 for all k,

where subscript k denotes disciplinary information that remains outside of the
MDA. The disciplinary problem for discipline i, which is resolved inside the MDA,
is

minimize f0 (x, y (x, y)) + f

i

(x0, xi

, y

i

(x0, xi

, y

j 6=i

))

with respect to x

i

subject to c

i

(x0, xi

, y

i

(x0, xi

, y

j 6=i

)) � 0.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 58 / 75

Multidisciplinary Design Optimization Distributed Architectures

Asymmetric Subspace Optimization (ASO) 2
x

(0)
0,1,2 y

t,(0)
x

(0)
3

x

⇤
0,1,2

0,10!1:
System

Optimization
9 : x0,1,2 2 : x0, x1 3 : x0, x2 6 : x0,1,2 5 : x0

10 : f0,1,2, c0,1,2

9:
Discipline 0, 1,

and 2
Functions

1,8!2:
MDA

2 : y

t

2, y
t

3 3 : y

t

3

y

⇤
1 9 : y1 8 : y1

2:
Analysis 1

3 : y1 6 : y1 5 : y1

y

⇤
2 9 : y2 8 : y2

3:
Analysis 2

6 : y2 5 : y2

x

⇤
3 9 : x3

4,7!5:
Optimization 3

6 : x3 5 : x3

7 : f0, c0, f3, c3

6:
Discipline 0

and 3
Functions

y

⇤
3 9 : y3 8 : y3 6 : y3

5:
Analysis 3

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 59 / 75

Multidisciplinary Design Optimization Distributed Architectures

ASO Algorithm

Input: Initial design variables x

Output: Optimal variables x

⇤, objective function f

⇤, and constraint values c

⇤

0: Initiate system optimization
repeat

1: Initiate MDA
repeat

2: Evaluate Analysis 1
3: Evaluate Analysis 2
4: Initiate optimization of Discipline 3
repeat

5: Evaluate Analysis 3
6: Compute discipline 3 objectives and constraints
7: Update local design variables

until 7 ! 5: Discipline 3 optimization has converged
8: Update coupling variables

until 8 ! 2 MDA has converged
9: Compute objective and constraint function values for all disciplines 1 and

2
10: Update design variables

until 10 ! 1: System optimization has converged

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 60 / 75

Multidisciplinary Design Optimization Distributed Architectures

Classification of MDO Architectures

AAO SAND

IDF MDF

Monolithic

CSSO

BLISS

MDOIS

ASO

Distributed MDF

QSD

CO

BLISS-2000ATC

IPD/EPD

ECO

Distributed IDF

Penalty Multilevel

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 41 / 75

AAO SAND

IDF MDF

Monolithic

minimize f0 (x, y) +

NX

i=1

fi (x0, xi, yi)

with respect to x, y

t
, y, ȳ

subject to c0 (x, y) � 0

ci (x0, xi, yi) � 0 for i = 1, . . . , N

c

c
i = y

t
i � yi = 0 for i = 1, . . . , N

Ri

�
x0, xi, y

t
j 6=i, ȳi, yi

�
= 0 for i = 1, . . . , N

Distributed MDF

CSSO: In system subproblem, disciplinary anal-
yses are replaced by surrogate models. Discipline
subproblems are solved using surrogates for the other
disciplines, and the solutions from these discipline
subproblems are used to update the surrogate mod-
els.

BLISS: Coupled derivatives of the multidisci-
plinary analysis are used to construct linear subprob-
lems for each discipline with respect to local design
variables. Post-optimality derivatives from the so-
lutions of these subproblems are computed to form
the system linear subproblem, which is solved with
respect to shared design variables.

MDOIS: Applicable to MDO problems with no
shared objectives, constraints, or design variables.
Discipline subproblems are solved independently as-
suming fixed coupling variables, and then a multi-
disciplinary analysis is performed to update the cou-
pling.

ASO: System subproblem is like that of MDF, but
some disciplines solve a discipline optimization sub-
problem within the multidisciplinary analysis with
respect to local variables subject to local constraints.
Coupled post-optimality derivatives from the disci-
pline subproblems are computed to guide the system
subproblem.

Distributed IDF

Multilevel

CO: Copies of the shared variables are created for
each discipline, together with corresponding consistency
constraints. Discipline subproblems minimize di↵erence
between the copies of shared and local variables sub-
ject to local constraints. System subproblem minimizes
objective subject to shared constraints subject to con-
sistency constraints.

BLISS-2000: Discipline subproblems minimize
the objective with respect to local variables subject to
local constraints. A surrogate model of the local op-
tima with respect to the shared variables is maintained.
Then, system subproblem minimizes objective with re-
spect to shared design and coupling variables subject to
shared design and consistency constraints, considering
the disciplinary preferences.

QSD: Each discipline is assigned a “budget” for a lo-
cal objective and the discipline problems maximize the
margin in their local constraints and the budgeted ob-
jective. System subproblem minimizes a shared objec-
tive and the budgets of each discipline subject to shared
design constraints and positivity of the margin in each
discipline.

Penalty

ATC: Copies of the shared variables are used in disci-
pline subproblems together with the corresponding con-
sistency constraints. These consistency constraints are
relaxed using a penalty function. System and discipline
subproblems solve their respective relaxed problem in-
dependently. Penalty weights are increased until the
desired consistency is achieved.

IPD/EPD: Applicable to MDO problems with no
shared objectives or constraints. Like ATC, copies of
shared variables are used for every discipline subprob-
lem and the consistency constraints are relaxed with a
penalty function. Unlike ATC, the simple structure of
the disciplinary subproblems is exploited to compute
post-optimality sensitivities to guide the system sub-
problem.

ECO: As in CO, copies of the shared design vari-
ables are used. Disciplinary subproblems minimize
quadratic approximations of the objective subject to lo-
cal constraints and linear models of nonlocal constraints.
Shared variables are determined by the system subprob-
lem, which minimizes the total violation of all consis-
tency constraints.

Remove c

c
, y

t

Remove
R, y, ȳ

Remove
R, y, ȳ

Remove c

c
, y

t

Figure 7. Classification and summary of the MDO architectures.

16
of53

A
m

erican
Institute

ofA
eronautics

and
A

stronautics

[Martins and Lambe, “MDO: A Survey of Architectures”, AIAAJ, 2013]

http://mdolab.engin.umich.edu/content/multidisciplinary-design-optimization-survey-architectures-1

Multidisciplinary Design Optimization Distributed Architectures

Example: A Framework for Automatic Implementation of
MDO 2

Optimization

MDO

1

N

MDF IDF CO CSSO

Discipline

RS

Optimizer

Solver

1 N

1
1

0..*

SAND

1

Sample analytic problem:
I Characteristics

I Nonlinear coupling between disciplines and the objective
I Local constraints
I Variable bounds

I Problem statement:

minimize: x

2
2 + x3 + y1 + e�y2

w.r.t.:x1, x2, x3

s.t.:
y1

3.16
� 1 � 0, 1 � y2

24
� 0

� 10  x1  10

0  x2, x3  10

where: y1 = x

2
1 + x2 + x3 � 0.2y2 (Discipline 1)

y2 =
p

y1 + x1 + x3 (Discipline 2)

Finite Di↵erence Complex Step
Architecture Discipline 1 Discipline 2 Discipline 1 Discipline 2
MDF 346 346 238 238
IDF 61 61 55 55
SAND 1+57⇤ 1+57⇤ 1+49⇤ 1+49⇤

CO 1,291 729 1,079 587
CSSO 1,250 1,188 1,210 1,148

Architecture Finite Di↵erence Complex Step
MDF 1.1515 ⇥ 10�6 1.1506 ⇥ 10�6

IDF 2.0827 ⇥ 10�9 2.0803 ⇥ 10�9

SAND 7.1353 ⇥ 10�7 7.1356 ⇥ 10�7

CO 6.1643 ⇥ 10�6 7.3389 ⇥ 10�6

CSSO 7.1386 ⇥ 10�6 3.9559 ⇥ 10�6

Scalable Problem:
I Designed to have arbitrary characteristics:

I Number of disciplines (N
d

)
I Number of local design variables in each discipline (N

x

i

)
I Number of global design variables (N

z

)
I Number of coupling variables for each discipline (N

y

)
I Strength of coupling between disciplines (�)

I Additionally:
I Type of objective function (quadratic, other nonlinear)
I Type of coupling between disciplines (linear, nonlinear)
I Number and type of local constraints
I Number and type of global constraints
I Type of discipline analyses (linear, nonlinear, etc.)

I Reference problem:
I Quadratic objective function
I Linear constraints on all discipline outputs
I Linear coupling between disciplines
I 3 disciplines, 3 global variables
I 50 local design variables per discipline
I 50 state variables (and coupling variables) per discipline

I Coupling variable investigation: varied between 6 and 1200
I 50 local design variables per discipline (150 total)
I Number of coupling variables per discipline varied in lock step

I Local design variable investigation
I 50 coupling variable per discipline (150 total)
I Number of local design variables per discipline varied in lock step

Scalable problem statement:
minimize:

N

zX

k=1

z

2 +
N

dX

m=1

N

yX

n=1

y

2
m

n

w.r.t.: z, x

i

s.t.: 1 � y

i

C

i

 0
Discipline i:

Given: z

i

, x

i

(from system level)

y

j

(from other disciplines)

Solve: C

y

i

y

i

= �
�
C

z

i

z

i

+ C

x

i

x

i

� C

y

j

y

j

�

Return: y

i

I
C

i

, C

x

i

, C

z

i

, C

y

i

randomly generated coe�cient matrices [0,10]
I All positive other than C

y

i

which is negative for every other discipline
Local design variable study

6 30 60 150 600 1200
MDF 36,908 160,002 523,158 1,322,168 1,595,202 2,812,938
IDF 1,289 7,548 11,988 32,229 30,918 55,518
SAND — — — 137,105* 30,161* 52,807*
CO — — 18,533,209 12,934,596 13,314,640 19,780,660

Coupling variable study

6 30 60 147 150 300 600
MDF 102,420 291,440 387,950 1,062,078 1,322,168 811,334 591,614
IDF 2,244 6,260 8,993 21,376 32,229 3,4054 33,934
SAND 1,921* 4,049* 2,783* 62,007* 137,105* — —
CO 9,709 44,009 189,885 4,219,525 12,934,596 — —

* Residual evaluations

E↵ect of number of local design
variables

E↵ect of number of coupling variables

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 62 / 75

[Martins et al., ACM TOMS, 2009]
[Tedford and Martins, Optimization and Engineering, 2010]

http://mdolab.engin.umich.edu/content/pymdo-object-oriented-framework-multidisciplinary-design-optimization-0
http://mdolab.engin.umich.edu/content/benchmarking-multidisciplinary-design-optimization-algorithms-0

Computing derivatives:
review and unification

[Martins and Hwang, AIAAJ, 2013]

http://mdolab.engin.umich.edu/content/review-and-unification-discrete-methods-computing-derivatives-single-and-multi-disciplinary

What’s in a name?
75

• Sensitivity analysis: Includes much more than derivatives of
functions and numerical models

• Sensitivity derivative: Somewhat redundant?

• Design sensitivities: Acceptable term

• Derivative: Matches the scope of this talk most closely

• Gradient/Jacobian: This vector/matrix of derivatives is what
we need for optimization

Scope
• First order derivatives

• Deterministic numerical models

decision making. There are various types of sensitivities that can be defined. One common classification distinguishes
between local and global sensitivity analysis [1]. Global sensitivity analysis aims to quantify the response with respect
to inputs over a wide range of values, and it is better suited for models that have large uncertainties. Local sensitivity
analysis aims to quantify the response for a fixed set of inputs, and is typically used in physics based models where the
uncertainties tend to be lower. In the present review, we focus on the computation of local sensitivities in the form of
first-order total derivatives, where the model is a numerical algorithm. The computational models are assumed to be
deterministic. Although stochastic models require approaches that are beyond the scope of this paper, some of these
approaches can benefit from the deterministic techniques presented herein.

Derivatives play a central role in many numerical algorithms. In many cases, such as in Newton-based methods,
the computational effort of an algorithm depends heavily on the run time and memory requirements of the computa-
tion of the derivatives. Examples of such algorithms include Newton–Krylov methods applied to the solution of the
Euler equations [2], coupled aerostructural equations [3, 4, 5], and quasi-Newton methods used to solve optimization
problems [6, 7]. Other applications of derivatives include gradient-enhanced surrogate models [8], structural topology
optimization [9, 10, ?], and aircraft stability [11, 12].

The accuracy of the derivative computation affects the convergence behavior of the solver used in the algorithm.
For instance, accurate derivatives are important in gradient-based optimization to ensure robust and efficient conver-
gence, especially for problems with large numbers of constraints. The precision of the gradients limits that of the
optimum solution, and inaccurate gradients can cause the optimizer to halt or to take a less direct route to the optimum
that involves more iterations.

In this review, for generality, we consider the numerical models to be algorithms that solve a set of governing
equations to find the state of a system. The computational effort involved in these numerical models, or simulations,
is assumed to be significant. Examples of such simulations include computational fluid dynamics (CFD) and struc-
tural finite-element solvers. We also extend our review to consider multiple coupled simulations, which appear in
multidisciplinary design optimization (MDO) problems.

The simplest method for computing derivatives is the use of an appropriate finite-difference formula, such as a
forward finite-difference, where each input of interest is perturbed and the output reevaluated to determine its new
value. The derivative is then estimated by taking the difference in the output relative to the unperturbed one and
dividing by the value of the perturbation. Although finite differences are not known for being particularly accurate or
computationally efficient, they are extremely easy to implement and therefore widely used.

In addition to inaccuracies inherent in finite-differences, computing sensitivities with respect to a large number of
inputs using these methods is prohibitively expensive when the computational cost of the simulations is significant.
Most applications require more accuracy and efficiency than is afforded by this approach, motivating the pursuit of the
more advanced methods that we describe in this paper.

The overarching goal of this paper is to review the available methods for the sensitivity analysis of coupled systems
and to advance the understanding of these methods in a unified mathematical framework. Some of this material has
been the subject of excellent reviews and textbooks, but they have either been limited to a single discipline [13, 14,
15, 16] or limited in scope [17, 18, 19]. Spurred by the recent advances in this area, we decided to write this review
and connect some methods that are usually not explained together, leading to new insights and a broader view of the
subject. In addition to a deeper understanding of the topic, we aim to help researchers and practitioners decide which
method is suitable for their particular needs.

We start this review by defining the nomenclature and the context of the theory. Then we progress through the
theory of sensitivity analysis for single systems and connect the various methods under a unified mathematical frame-
work. Finally, we extend this theory to the sensitivity analysis of coupled systems, and present some recent advances.
The historical literature is cited as the theory is presented.

II. Differentiation of a Function

Throughout this paper we assume that we want ultimately to compute the derivatives of a vector-valued function
f with respect to a vector of independent variables x, i.e., we want the Jacobian,

df

dx
=

2

666664

df1
dx1

· · · df1
dx

n

x

...
. . .

...
df

n

f

dx1

· · · df
n

f

dx
n

x

3

777775
(1)

2 of 26

American Institute of Aeronautics and Astronautics

Classification
of methods

for computing
derivatives

Level of
decomposition

Black box

Solver

Discipline

Line of code

Differentiation
methods

Finite-
difference

Complex-
step

Symbolic

Figure 1: Classification of methods for derivative computations: the differentation methods are the building blocks for
other methods, each of which considers a different level of decomposition.

which is an n

f

⇥ n

x

matrix.

A. Finite Differences

Finite-difference formulas are derived from combining Taylor series expansions. Using the right combinations of
these expansions, it is possible to obtain finite-difference formulas that estimate an arbitrary order derivative with any
required order truncation error. The simplest finite-difference formula can be directly derived from one Taylor series
expansion, yielding

df

dx
j

=
f(x+ e

j

h)� f(x)

h

+O(h) (2)

which is directly related to the definition of derivative. Note that in general there are multiple functions of interest,
and thus f can be a vector that includes all the outputs of a given component. The application of this formula requires
the evaluation of a component at the reference point x, and one perturbed point x + e

j

h, and yields one column
of the Jacobian (1). Each additional column requires an additional evaluation of the component. Hence, the cost of
computing the complete Jacobian is proportional to the number of input variables of interest, n

x

.
Finite-difference methods are widely used to compute derivatives due to their simplicity and the fact that they can

be implemented even when a given component is a black box. Most gradient-based optimization algorithms perform
finite-differences by default when the user does not provide the required gradients.

When it comes to accuracy, we can see from the forward-difference formula (2) that the truncation error is pro-
portional to the magnitude of the perturbation, h. Thus it is desirable to decrease h as much as possible. The problem
with decreasing h is that the perturbed value of the functions of interest will approach the reference values. When
using finite-precision arithmetic, this leads to subtractive cancellation: a loss of significant digits in the subtraction
operation. In the extreme case, when h is small enough, all digits of the perturbed functions will match the reference
values, yielding zero for the derivatives. Given the opposite trends exhibited by the subtractive cancellation error and
truncation error, for each x there is a best h that minimizes the overall error.

Due to their flexibility, finite-difference formulas can always be used to compute derivatives, at any level of nesting.
They can be used to compute derivatives of a single function, composite functions, iterative functions or any system
with multiply nested components.

B. Complex Step

The complex-step derivative approximation, strangely enough, computes derivatives of real functions using complex
variables. This method originated with the work of Lyness and Moler [20] and Lyness [21]. They developed several
methods that made use of complex variables, including a reliable method for calculating the n

th derivative of an
analytic function. However, only later was this theory rediscovered by Squire and Trapp [22], who derived a simple
formula for estimating the first derivative.

The complex-step derivative approximation, like finite-difference formulas, can also be derived using a Taylor
series expansion. Rather than using a real step h, we now use a pure imaginary step, ih. If f is a real function in real

3 of 26

American Institute of Aeronautics and Astronautics

Applications of Derivatives
76

• Numerical optimization

‣ For gradient-based optimization, need the gradient of the
objective and constraints to iterate and satisfy the KKT
optimality conditions

‣ Only viable option for problems with large numbers of design
variables

• Construction of linear approximations

• Gradient-enhanced surrogate models

• Newton-type methods

• Functional analysis

• Parameter estimation

• Aircraft stability derivatives

Computational Cost vs. Number of Variables
77

Number of Design Variables

N
o

rm
a

li
ze

d
 T

im
e

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

300

350

400

Adjoint
Finite Difference

1.68 + 0.00005Nx

1
.0

 +
 0

.2
3
N

x

Figure 9: Gradient evaluation cost for first-order finite differencing and the coupled adjoint method
versus number of design variables; one unit of normalized time corresponds to one aerostructural
solution

for each geometric design variable. Nevertheless, each additional design variable requires only
0.005% of the aerostructural solution time.

It is worth comparing the current results with the previous work of Martins et al. [31]. In that
work, the coupled adjoint cost was found to scale with the number of design variables accord-
ing to 3.4 + 0.01N

x

. Since the constant term in the equation includes the aerostructural solution,
the coupled adjoint solution had a baseline cost of 2.4. The present method scales according to
1.67 + 5 ⇥ 10

�5

N

x

, as indicated in Figure 9. This corresponds to a baseline cost for the coupled
adjoint of 0.67, i.e., a 72% reduction relative to the previous implementation. This is primarily
due to the elimination of the finite differencing that was used to compute the off-diagonal coupled
adjoint terms. This improvement is even more significant in absolute terms because the aerostruc-
tural solution of the new implementation is also much more efficient. Additionally, the slope in
the dependency on the number of design variables has been reduced by over two orders of magni-
tude. This is achieved by eliminating the use of finite-difference derivatives in the total-derivative
equation (15).

We have shown that the new implementation of the coupled adjoint method exhibits extremely
good design-variable scaling. The coupled computational cost can be considered practically inde-
pendent of the number of design variables, and it is now feasible to compute gradients with respect

35 of 42

American Institute of Aeronautics and Astronautics

[Kenway, Kennedy and Martins, AIAA Journal, 2013]

http://arc.aiaa.org/doi/full/10.2514/1.J052255

78

Objectives
• Review all methods for computing derivatives of

multidisciplinary systems

• Unify the theory behind these methods

• Create opportunities for new insights
how AD is implemented, it will become clear that this assumption is not restrictive, as programs iterate the chain rule
(and thus the total derivatives) together with the program variables, converging to the correct total derivatives.

In the AD perspective, the independent variables x and the quantities of interest f are assumed to be in the vector
of variables v. Typically, the design variables are among the v’s with lower indices, and the quantities of interest are
among the last quantities. Thus, to make clear the connection to the other derivative computation methods, we group
these variables as follows,

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T . (21)

r
2

r
1

f

y

x

r

y
2

y
1

v
1

v
2

v
3

v
4

.

.

.

v
n

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T

Figure 4: Decomposition level for algorithmic differentiation: the variables v are all the variables assigned in the
computer program.

The chain rule 14 introduced in the previous section was

dv
i

dv
j

= �

ij

+
i�1X

k=j

@V

i

@v

k

dv
k

dv
j

, (22)

where the V represent explicit functions, each defined by a single line in the computer program. The partial derivatives,
@V

i

/@v

k

can be automatically differentiated symbolically by applying another chain rule within the function defined
by the respective line.

The chain rule (22) can be solved in two ways. In the forward mode, we choose one v

j

and keep j fixed. Then
we work our way forward in the index i = 1, 2, . . . , n until we get the desired total derivative. In the reverse mode,
on the other hand, we fix v

i

(the quantity we want to differentiate) and work our way backward in the index j =
n, n � 1, . . . , 1 all the way to the independent variables. We now describe these two modes in more detail, and
compare the computational costs associated with each of them.

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)

8 of 26

American Institute of Aeronautics and Astronautics

r
2

r
1

y
2

y
1

f

y

x

r

v = [v1, . . . , vn
x| {z }

�x

, v(n
x

+1), . . . , v(n
x

+n

y

)| {z }
�r

, v(n
x

+n

y

+1), . . . , v(n
x

+2n
y

)| {z }
�y

, v(n�n

f

), . . . , tn| {z }
�f

]T .

Figure 5: Decomposition level for analytic methods

�x

�r

�y

�f

Figure 6: Dependence of the variations in the design variables, residuals, states and quantities of interest for the
linearized system

The solution vector �y from this linear system is used in conjunction with the original perturbation vector �x to
compute the total change in �f , i.e.,

v1 = �x (36)

v2 = �r =
@R

@x

�x (37)

v3 = �y =


@R

@y

��1

(��r) (38)

v4 = �f =
@F

@x

�x+
@F

@y

�y (39)

(40)

At this point, all variables are functions of only previous variables, so we can apply the forward and reverse chain

12 of 26

American Institute of Aeronautics and Astronautics

y

r

r
2

r
1

f

x

y
2

y
1

v = [v1, . . . , vn
x| {z }

x

, . . . , v(n
x

+n

y1)| {z }
r1

, . . . , v(n
x

+n

y1+n

y2)| {z }
r2

, . . . , v(n
x

+2n
y1+n

y2)| {z }
y1

, . . . , v(n
x

+2n
y1+2n

y2)| {z }
y2

, v(n�n

f

), . . . , tn| {z }
f

]T .

Figure 8: Decomposition for the disciplinary level

�x

�r1

�r2

�y1

�y2

�f

(a) Residual

�x

�y1

�y2

�f

(b) Functional

�x

�r1

�y1

�y2

�f

(c) Hybrid

Figure 9: The different approaches for handling coupled multidisciplinary systems

Monolithic Analytic Multidisciplinary analytic AD

Level of decomposition Black box Solver Discipline Line of code
Differentiation method FD/CS Any Any Symbolic
Linear solution Trivial Numerical Numerical (block) Forward-substitution

Back-substitution

Table 1: Classification of the methods for computing derivatives with respect to the level of decomposition, differen-
tiation method, and strategy for solving the linear system.

15 of 26

American Institute of Aeronautics and Astronautics

C

i

(v) = 0, for 1  i  n. If we define ¯

C

i

(v) as the linearization of C

i

(v) about the point
v

0, the multivariate Taylor series expansion of the vector-valued function C is

�

¯

c =

@C

@v

�v, (6)

since all higher-order derivatives are zero, and @

¯

C/@v = @C/@v. The solution of the linear
system (6) yields the vector of changes to v required to obtain the perturbations in the linearized
constraints, �

¯

c, assuming @C/@v is invertible.
Since this equation uniquely defines �v for any left-hand side, we choose the vectors of the

standard basis for Rn with the j

th vector multiplied by �c̄

(j), i.e.,

⇥
e

1

�c̄

(1)

�� · · · ��e
j

�c̄

(j)

�� · · · ��e
n

�c̄

(n)

⇤
=

@C

@v

⇥
�v

(1)

�� · · · ���v

(j)

�� · · · ���v

(n)

⇤
, (7)

where each vector �v

(j) represents the changes to v that produce the variation [0, . . . , 0,�c̄

(j)

, 0, . . . , 0]

T .
We now move the scalars �c̄

(j) in Eq. (7) to the right-hand side to obtain

[e

1

| · · · |e
j

| · · · |e
n

] =

@C

@v


�v

(1)

�c̄

(1)

���� · · ·
����
�v

(j)

�c̄

(j)

���� · · ·
����
�v

(n)

�c̄

(n)

�
, (8)

where we now have an identity matrix on the left-hand side.
Alternatively, �v

(j) can be interpreted as the direction in Rn along which only the j

th con-
straint C

j

(v) changes, while all other constraints remain unchanged to the first order. Therefore,
�v

(i)

/�c̄

(j) is the j

th column of the dv/ dc matrix, since it represents the vector of variations in
v that comes about through an implicit dependence on ¯

c, which is perturbed only in the j

th entry.
Thus, the @C/@v and dv/ dc matrices are inverses of each other and they commute, so we

can switch the order and take the transpose to get an alternative form. Therefore, we can write

@C

@v

dv

dc

= I =

@C

@v

T

dv

dc

T

. (9)

We call the left-hand side the forward chain rule and the right-hand side the reverse chain rule.
As we will see throughout the remainder of this paper: All methods for derivative computation can
be derived from one of the forms of the chain rule (9) by changing what we mean by “variables”
and “constraints,” which can be seen as a level of decomposition. We will refer to this equation as
the unifying chain rule.

The derivatives of interest, df/ dx, are typically the derivatives of some of the last variables in
the sequence (v

1

, . . . , v

n

) with respect to some of the first variables in the same sequence. The vari-
ables and constraints are not necessarily in sequence, but we denote them as such for convenience
without loss of generality.

7 of 45

American Institute of Aeronautics and Astronautics

79

Methods for Computing Derivatives
• Finite differences

• Complex step

• Symbolic differentiation

• Automatic differentiation: forward and reverse

• Analytic methods: direct and adjoint

• Coupled derivatives of multidisciplinary systems

Classification
of methods

for computing
derivatives

Level of
decomposition

Black box

Solver

Discipline

Line of code

Differentiation
methods

Finite-
difference

Complex-
step

Symbolic

Figure 1: Classification of methods for derivative computations: the differentation methods are the building blocks for
other methods, each of which considers a different level of decomposition.

which is an n

f

⇥ n

x

matrix.

A. Finite Differences

Finite-difference formulas are derived from combining Taylor series expansions. Using the right combinations of
these expansions, it is possible to obtain finite-difference formulas that estimate an arbitrary order derivative with any
required order truncation error. The simplest finite-difference formula can be directly derived from one Taylor series
expansion, yielding

df

dx
j

=
f(x+ e

j

h)� f(x)

h

+O(h) (2)

which is directly related to the definition of derivative. Note that in general there are multiple functions of interest,
and thus f can be a vector that includes all the outputs of a given component. The application of this formula requires
the evaluation of a component at the reference point x, and one perturbed point x + e

j

h, and yields one column
of the Jacobian (1). Each additional column requires an additional evaluation of the component. Hence, the cost of
computing the complete Jacobian is proportional to the number of input variables of interest, n

x

.
Finite-difference methods are widely used to compute derivatives due to their simplicity and the fact that they can

be implemented even when a given component is a black box. Most gradient-based optimization algorithms perform
finite-differences by default when the user does not provide the required gradients.

When it comes to accuracy, we can see from the forward-difference formula (2) that the truncation error is pro-
portional to the magnitude of the perturbation, h. Thus it is desirable to decrease h as much as possible. The problem
with decreasing h is that the perturbed value of the functions of interest will approach the reference values. When
using finite-precision arithmetic, this leads to subtractive cancellation: a loss of significant digits in the subtraction
operation. In the extreme case, when h is small enough, all digits of the perturbed functions will match the reference
values, yielding zero for the derivatives. Given the opposite trends exhibited by the subtractive cancellation error and
truncation error, for each x there is a best h that minimizes the overall error.

Due to their flexibility, finite-difference formulas can always be used to compute derivatives, at any level of nesting.
They can be used to compute derivatives of a single function, composite functions, iterative functions or any system
with multiply nested components.

B. Complex Step

The complex-step derivative approximation, strangely enough, computes derivatives of real functions using complex
variables. This method originated with the work of Lyness and Moler [20] and Lyness [21]. They developed several
methods that made use of complex variables, including a reliable method for calculating the n

th derivative of an
analytic function. However, only later was this theory rediscovered by Squire and Trapp [22], who derived a simple
formula for estimating the first derivative.

The complex-step derivative approximation, like finite-difference formulas, can also be derived using a Taylor
series expansion. Rather than using a real step h, we now use a pure imaginary step, ih. If f is a real function in real

3 of 26

American Institute of Aeronautics and Astronautics

80

Black Box Methods

When a component is just a series of explicit functions, we can consider the component itself to be an explicit
composite function. In cases where the computation of the outputs requires iteration, it is helpful to denote the
computation as a vector of residual equations,

r = R(v) = 0 (8)

where the algorithm changes certain components of v until all the residuals converge to zero (or in practice, to within
a small specified tolerance). The subset of v that is iterated to achieve the solution of these equations are called the
state variables.

To relate these concepts to the usual conventions in sensitivity analysis, we now separate the subsets in v into
independent variables x, state variables y and quantities of interest, f . Note that these do not necessary correspond
exactly to the component inputs, intermediate variables and outputs, respectively. Using this notation, we can write
the residual equations as,

r = R(x,y(x)) = 0 (9)

where y(x) denotes the fact that y depends implicitly on x through the solution of the residual equations (9). It is the
solution of these equations that completely determines y for a given x. The functions of interest (usually included in
the set of component outputs) also have the same type of variable dependence in the general case, i.e.,

f = F(x,y(x)). (10)

When we compute the values f , we assume that the state variables y have already been determined by the solution of
the residual equations (9). The dependencies involved in the computation of the functions of interest are represented
in Figure 3. For the purposes of this paper, we are ultimately interested in the total derivatives of quantities f with
respect to x.

x

R(x,y) = 0 F (x,y) f

x 2 Rn

x

y 2 Rn

y

r 2 Rn

y

f 2 Rn

f

Figure 3: Definition of the variables involved at the solver level, showing the dependency of the quantity of interest on
the design variables, both directly and through the residual equations that determine the system states

B. A Unified Framework

In this section, we present the mathematical framework that unifies the methods for computing total derivatives. The
methods differ in the extent to which they decompose a system, but they all come from a basic principle: a generalized
chain rule.

To arrive at this form of chain rule, we start from the sequence of variables (v1, . . . , vn), whose values are functions
of earlier variables, v

i

= V

i

(v1, . . . , vi�1). For brevity, V
i

(v1, . . . , vi�1) is written as v

i

(·). We define a partial
derivative, @V

i

/@v

j

, of a function V

i

with respect to a variable v

j

as

@V

i

@v

j

=
V

i

(v1, . . . , vj�1, vj + h, v

j+1, . . . , vi�1)� V

i

(·)
h

. (11)

The total variation �v

k

, due to a perturbation �v

j

can be computed by using the sum of partial derivatives,

�v

k

=
k�1X

l=j

@V

k

@v

l

�v

l

(12)

where all intermediate �v’s between j and k are computed and used. The total derivative is defined as,

dv
i

dv
j

=
�v

i

�v

j

, (13)

6 of 26

American Institute of Aeronautics and Astronautics

81

Finite Differences

• Want to decrease truncation error by
decreasing the step, but...

• Subtractive cancellation becomes worse as
step decreases

• Require evaluations of

decision making. There are various types of sensitivities that can be defined. One common classification distinguishes
between local and global sensitivity analysis [1]. Global sensitivity analysis aims to quantify the response with respect
to inputs over a wide range of values, and it is better suited for models that have large uncertainties. Local sensitivity
analysis aims to quantify the response for a fixed set of inputs, and is typically used in physics based models where the
uncertainties tend to be lower. In the present review, we focus on the computation of local sensitivities in the form of
first-order total derivatives, where the model is a numerical algorithm. The computational models are assumed to be
deterministic. Although stochastic models require approaches that are beyond the scope of this paper, some of these
approaches can benefit from the deterministic techniques presented herein.

Derivatives play a central role in many numerical algorithms. In many cases, such as in Newton-based methods,
the computational effort of an algorithm depends heavily on the run time and memory requirements of the computa-
tion of the derivatives. Examples of such algorithms include Newton–Krylov methods applied to the solution of the
Euler equations [2], coupled aerostructural equations [3, 4, 5], and quasi-Newton methods used to solve optimization
problems [6, 7]. Other applications of derivatives include gradient-enhanced surrogate models [8], structural topology
optimization [9, 10, ?], and aircraft stability [11, 12].

The accuracy of the derivative computation affects the convergence behavior of the solver used in the algorithm.
For instance, accurate derivatives are important in gradient-based optimization to ensure robust and efficient conver-
gence, especially for problems with large numbers of constraints. The precision of the gradients limits that of the
optimum solution, and inaccurate gradients can cause the optimizer to halt or to take a less direct route to the optimum
that involves more iterations.

In this review, for generality, we consider the numerical models to be algorithms that solve a set of governing
equations to find the state of a system. The computational effort involved in these numerical models, or simulations,
is assumed to be significant. Examples of such simulations include computational fluid dynamics (CFD) and struc-
tural finite-element solvers. We also extend our review to consider multiple coupled simulations, which appear in
multidisciplinary design optimization (MDO) problems.

The simplest method for computing derivatives is the use of an appropriate finite-difference formula, such as a
forward finite-difference, where each input of interest is perturbed and the output reevaluated to determine its new
value. The derivative is then estimated by taking the difference in the output relative to the unperturbed one and
dividing by the value of the perturbation. Although finite differences are not known for being particularly accurate or
computationally efficient, they are extremely easy to implement and therefore widely used.

In addition to inaccuracies inherent in finite-differences, computing sensitivities with respect to a large number of
inputs using these methods is prohibitively expensive when the computational cost of the simulations is significant.
Most applications require more accuracy and efficiency than is afforded by this approach, motivating the pursuit of the
more advanced methods that we describe in this paper.

The overarching goal of this paper is to review the available methods for the sensitivity analysis of coupled systems
and to advance the understanding of these methods in a unified mathematical framework. Some of this material has
been the subject of excellent reviews and textbooks, but they have either been limited to a single discipline [13, 14,
15, 16] or limited in scope [17, 18, 19]. Spurred by the recent advances in this area, we decided to write this review
and connect some methods that are usually not explained together, leading to new insights and a broader view of the
subject. In addition to a deeper understanding of the topic, we aim to help researchers and practitioners decide which
method is suitable for their particular needs.

We start this review by defining the nomenclature and the context of the theory. Then we progress through the
theory of sensitivity analysis for single systems and connect the various methods under a unified mathematical frame-
work. Finally, we extend this theory to the sensitivity analysis of coupled systems, and present some recent advances.
The historical literature is cited as the theory is presented.

II. Differentiation of a Function

Throughout this paper we assume that we want ultimately to compute the derivatives of a vector-valued function
f with respect to a vector of independent variables x, i.e., we want the Jacobian,

df

dx
=

2

666664

df1
dx1

· · · df1
dx

n

x

...
. . .

...
df

n

f

dx1

· · · df
n

f

dx
n

x

3

777775
(1)

2 of 26

American Institute of Aeronautics and Astronautics

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

n

f

⇥ n

x

f(x+ e

j

h) = f(x) + h

df

dx

j

+

h

2

2

d

2

f

dx

2

j

+ . . .)

df

dx

j

=

f(x+ e

j

h)� f(x)

h

+O(h)

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

1

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

n

f

⇥ n

x

f(x+ e

j

h) = f(x) + h

df

dx

j

+

h

2

2

d

2

f

dx

2

j

+ . . .)

df

dx

j

=

f(x+ e

j

h)� f(x)

h

+O(h)

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

1

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

n

f

⇥ n

x

f(x+ e

j

h) = f(x) + h

df

dx

j

+

h

2

2

d

2

f

dx

2

j

+ . . .)

df

dx

j

=

f(x+ e

j

h)� f(x)

h

+O(h)

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

1

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

n

f

⇥ n

x

n

f

⇥ n

x

f(x+ e

j

h) = f(x) + h

df

dx

j

+

h

2

2

d

2

f

dx

2

j

+ . . .)

df

dx

j

=

f(x+ e

j

h)� f(x)

h

+O(h)

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

1

82

Finite Differences
Computing Derivatives Finite Di↵erences

Finite Di↵erences 5
f(x + h) +1.234567890123431
f(x) +1.234567890123456
� f �0.000000000000025

x x+h

f(x)

f(x+h)

Finite di↵erence approximation

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 136 / 427

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

n

f

⇥ n

x

f(x+ e

j

h) = f(x) + h

df

dx

j

+

h

2

2

d

2

f

dx

2

j

+ . . .)

df

dx

j

=

f(x+ e

j

h)� f(x)

h

+O(h)

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

1

83

Complex Step

• No subtractive
cancellation

• Precision of derivative
matches that of

• Flexible implementation

variables and it is also analytic, we can expand it in a Taylor series about a real point x as follows,

f(x+ ihe

j

) = f(x) + ih

df

dx
j

� h

2

2

d2f

dx2
j

� ih

3

6

d3f

dx3
j

+ . . . (3)

Taking the imaginary parts of both sides of this equation and dividing it by h yields

df

dx
j

=
Im [f(x+ ihe

j

)]

h

+O(h2) (4)

Hence the approximations is a O(h2) estimate of the derivative. Like a finite-difference formula, each additional
evaluation results in a column of the Jacobian (1), and the cost of computing the required derivatives is proportional to
the number of design variables, n

x

.
Because there is no subtraction operation in the complex-step derivative approximation (4), the only source of

numerical error is the truncation error, which is O(h2). By decreasing h to a small enough value, the truncation error
can be made to be of the same order as the numerical precision of the evaluation of f .

The first application of this approach to an iterative solver is due to Anderson et al. [23], who used it to compute
derivatives of a Navier–Stokes solver, and later multidisciplinary systems [24]. Martins et al. [25] showed that the
complex-step method is generally applicable to any algorithm and described the detail procedure for its implemen-
tation. They also present an alternative way of deriving and understanding the complex step, and connect this to
algorithmic differentiation.

The complex-step method requires access to the source code of the given component, and thus cannot be applied to
black box components without additional effort. To implement the complex-step method, the source code of the com-
ponent must be modified so that all real variables and computations are replaced with complex ones. In addition, some
intrinsic functions need to be replaced, depending on the programming language. Martins et al. [25] provide a script
that facilitates the implementation of the complex-step method to Fortran codes, as well as details for implementation
in Matlab, C/C++ and Python.

Figure 2 illustrates the difference between the complex-step and finite-difference formulas. When using the
complex-step method, the differencing quotient is evaluated using the imaginary parts of the function values and
step size, and the quantity f(x

j

) has no imaginary component to subtract.

Re Re

Im

(x, 0) (x+ h, 0) (x, 0)

(x, ih)

df

dx
⇡ f(x+ h)� f(x)

h

df

dx
⇡ Im[f(x+ ih)]� Im[f(x)]

Im[ih]
=

Im[f(x+ ih)]

h

Figure 2: Derivative approximations df/dx using a forward step in the real (left) and complex (right) axes. Here,
f and x are scalars. In the complex-step method, there is no subtraction operation involved because the value of the
initial point, f(x), has no imaginary part.

The complex-step approach is now widely used, with applications ranging from the verification of high-fidelity
aerostructural derivatives [26, 27] to development of immunology models [28]. In one case, the complex-step was
implemented in an aircraft design optimization framework that involves multiple languages (Python, C, C++ and
Fortran) [29], demonstrating the flexibility of this approach.

C. Symbolic Differentiation

Symbolic differentiation is only possible for explicit functions, and can either be done by hand or by appropriate
software. For a sequence of composite functions, it is possible to use the chain rule, but symbolic differentiation
becomes impossible for general algorithms.

4 of 26

American Institute of Aeronautics and Astronautics

variables and it is also analytic, we can expand it in a Taylor series about a real point x as follows,

f(x+ ihe

j

) = f(x) + ih

df

dx
j

� h

2

2

d2f

dx2
j

� ih

3

6

d3f

dx3
j

+ . . . (3)

Taking the imaginary parts of both sides of this equation and dividing it by h yields

df

dx
j

=
Im [f(x+ ihe

j

)]

h

+O(h2) (4)

Hence the approximations is a O(h2) estimate of the derivative. Like a finite-difference formula, each additional
evaluation results in a column of the Jacobian (1), and the cost of computing the required derivatives is proportional to
the number of design variables, n

x

.
Because there is no subtraction operation in the complex-step derivative approximation (4), the only source of

numerical error is the truncation error, which is O(h2). By decreasing h to a small enough value, the truncation error
can be made to be of the same order as the numerical precision of the evaluation of f .

The first application of this approach to an iterative solver is due to Anderson et al. [23], who used it to compute
derivatives of a Navier–Stokes solver, and later multidisciplinary systems [24]. Martins et al. [25] showed that the
complex-step method is generally applicable to any algorithm and described the detail procedure for its implemen-
tation. They also present an alternative way of deriving and understanding the complex step, and connect this to
algorithmic differentiation.

The complex-step method requires access to the source code of the given component, and thus cannot be applied to
black box components without additional effort. To implement the complex-step method, the source code of the com-
ponent must be modified so that all real variables and computations are replaced with complex ones. In addition, some
intrinsic functions need to be replaced, depending on the programming language. Martins et al. [25] provide a script
that facilitates the implementation of the complex-step method to Fortran codes, as well as details for implementation
in Matlab, C/C++ and Python.

Figure 2 illustrates the difference between the complex-step and finite-difference formulas. When using the
complex-step method, the differencing quotient is evaluated using the imaginary parts of the function values and
step size, and the quantity f(x

j

) has no imaginary component to subtract.

Re Re

Im

(x, 0) (x+ h, 0) (x, 0)

(x, ih)

df

dx
⇡ f(x+ h)� f(x)

h

df

dx
⇡ Im[f(x+ ih)]� Im[f(x)]

Im[ih]
=

Im[f(x+ ih)]

h

Figure 2: Derivative approximations df/dx using a forward step in the real (left) and complex (right) axes. Here,
f and x are scalars. In the complex-step method, there is no subtraction operation involved because the value of the
initial point, f(x), has no imaginary part.

The complex-step approach is now widely used, with applications ranging from the verification of high-fidelity
aerostructural derivatives [26, 27] to development of immunology models [28]. In one case, the complex-step was
implemented in an aircraft design optimization framework that involves multiple languages (Python, C, C++ and
Fortran) [29], demonstrating the flexibility of this approach.

C. Symbolic Differentiation

Symbolic differentiation is only possible for explicit functions, and can either be done by hand or by appropriate
software. For a sequence of composite functions, it is possible to use the chain rule, but symbolic differentiation
becomes impossible for general algorithms.

4 of 26

American Institute of Aeronautics and Astronautics

[Martins, et al., ACM TOMS, 2003]

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

n

f

⇥ n

x

f(x+ e

j

h) = f(x) + h

df

dx

j

+

h

2

2

d

2

f

dx

2

j

+ . . .)

df

dx

j

=

f(x+ e

j

h)� f(x)

h

+O(h)

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

1

Equations for presentation

x

R(x,y) = 0 F (x,y) f

x+ e

j

h

R(x,y) = 0 F (x,y)f = <f + Imf

() Numerical Example April 23, 2012 0 / 0

Equations for presentation

f = freal + ifimag

x

R(x,y) = 0 F (x,y) f

x+ e

j

h

R(x,y) = 0 F (x,y)f = Ref + Imf

() Numerical Example April 23, 2012 0 / 0

84

Complex Step: Another Derivation

[Martins, et al., ACM TOMS, 2003]

Computing Derivatives Complex-Step Method

Another derivation of the complex-step 1
I Consider a function, f = u + iv, of the complex variable, z = x + iy. If f is

analytic the Cauchy–Riemann equations apply, i.e.,

@u

@x
=

@v

@y

@u

@y
= �@v

@x
.

I We can use the definition of a derivative in the right hand side of the first
Cauchy–Riemann to get

@u

@x
= lim

h!0

v(x + i(y + h)) � v(x + iy)

h

where h is a small real number.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 143 / 427

85

Complex Step: Another Derivation

[Martins, et al., ACM TOMS, 2003]

Computing Derivatives Complex-Step Method

Another derivation of the complex-step 2
I Since the functions are real functions of a real variable, y = 0, u(x) = f(x)

and v(x) = 0 and we can write,

@f

@x
= lim

h!0

Im [f (x + ih)]

h
.

I For a small discrete h, this can be approximated by,

@f

@x
⇡ Im [f (x + ih)]

h
.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 144 / 427

86

Complex Step: Another Derivation

[Martins, et al., ACM TOMS, 2003]

Computing Derivatives Complex-Step Method

Another derivation of the complex-step 3

Re Re

Im

(x, 0) (x + h, 0) (x, 0)

(x, ih)

@F

@x
⇡ F (x + h) � F (x)

h

@F

@x
⇡ Im[F (x + ih)] � Im[F (x)]

Im[ih]

) @F

@x
⇡ Im[F (x + ih)]

h

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 145 / 427

87

[Martins, et al., ACM TOMS, 2003]

Computing Derivatives Complex-Step Method

Example: The Complex-Step Method Applied to a Simple
Function 2

Step�Size,�h

N
o
rm

a
liz

e
d
�E

rr
o
r,

!

Relative error of the derivative vs. decreasing step size

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 147 / 427

88

Thinking Inside the Box

how AD is implemented, it will become clear that this assumption is not restrictive, as programs iterate the chain rule
(and thus the total derivatives) together with the program variables, converging to the correct total derivatives.

In the AD perspective, the independent variables x and the quantities of interest f are assumed to be in the vector
of variables v. Typically, the design variables are among the v’s with lower indices, and the quantities of interest are
among the last quantities. Thus, to make clear the connection to the other derivative computation methods, we group
these variables as follows,

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T . (21)

r
2

r
1

f

y

x

r

y
2

y
1

v
1

v
2

v
3

v
4

.

.

.

v
n

v = [v1, . . . , vn
x| {z }

x

, . . . , v

j

, . . . , v

i

, . . . , v(n�n

f

), . . . , vn| {z }
f

]T

Figure 4: Decomposition level for algorithmic differentiation: the variables v are all the variables assigned in the
computer program.

The chain rule 14 introduced in the previous section was

dv
i

dv
j

= �

ij

+
i�1X

k=j

@V

i

@v

k

dv
k

dv
j

, (22)

where the V represent explicit functions, each defined by a single line in the computer program. The partial derivatives,
@V

i

/@v

k

can be automatically differentiated symbolically by applying another chain rule within the function defined
by the respective line.

The chain rule (22) can be solved in two ways. In the forward mode, we choose one v

j

and keep j fixed. Then
we work our way forward in the index i = 1, 2, . . . , n until we get the desired total derivative. In the reverse mode,
on the other hand, we fix v

i

(the quantity we want to differentiate) and work our way backward in the index j =
n, n � 1, . . . , 1 all the way to the independent variables. We now describe these two modes in more detail, and
compare the computational costs associated with each of them.

1. Forward Mode

To get a better understanding of the structure of the chain rule (14), and the options for performing that computation,
we now write it in the matrix form (18):

(I �D

V

)D
v

= I)

8 of 26

American Institute of Aeronautics and Astronautics

89

Algorithm, Variables, and Functions
Consider the sequence of all the variables and functions in an algorithm

Numerical Example

April 20, 2012

1 Equations for presentation

df

dx

=

2

666664

df

1

dx

1

· · · df

1

dx

n

x

.

.

.

.

.

.

.

.

.

df

n

f

dx

1

· · · df

n

f

dx

n

x

3

777775

| {z }
n

f

⇥n

x

n

f

⇥ n

x

n

f

⇥ n

x

f(x+ e

j

h) = f(x) + h

df

dx

j

+

h

2

2

d

2

f

dx

2

j

+ . . .)

df

dx

j

=

f(x+ e

j

h)� f(x)

h

+O(h)

v

i

= V

i

(v

1

, v

2

, . . . , v

i�1

), i = 1, . . . , n

dv

i

dv

j

= �

ij

+

i�1X

k=j

@V

i

@v

k

dv

k

dv

j

(I �DV)Dv = I = (I �DV)
T

Dv
T

(I �DV)Dv = I = (I �DV)
T

Dv
T

1

The partial derivative of any of these functions wrt to any other variable is

To arrive at this form of chain rule, we start from the sequence of variables (v1, . . . , vn), whose values are functions
of earlier variables, v

i

= V

i

(v1, . . . , vi�1). For brevity, V
i

(v1, . . . , vi�1) is written as v

i

(·). We define a partial
derivative, @V

i

/@v

j

, of a function V

i

with respect to a variable v

j

as

@V

i

@v

j

=
V

i

(v1, . . . , vj�1, vj + h, v

j+1, . . . , vi�1)� V

i

(·)
h

. (11)

The total variation �v

k

, due to a perturbation �v

j

can be computed by using the sum of partial derivatives,

�v

k

=
k�1X

l=j

@V

k

@v

l

�v

l

(12)

where all intermediate �v’s between j and k are computed and used. The total derivative is defined as,

dv
i

dv
j

=
�v

i

�v

j

, (13)

Using the two equations above, we can derive the following equation:

dv
i

dv
j

= �

ij

+
i�1X

k=j

@V

i

@v

k

dv
k

dv
j

, (14)

which expresses a total derivative in terms of the other total derivatives and the Jacobian of partial derivatives. Equa-
tion (14) is represents the chain rule for a system whose variables are v.

To get a better understanding of the structure of the chain rule (14), and the options for performing the computation
it represents, we now write it in matrix form. We can write the partial derivatives of the elementary functions V

i

with
respect to v

i

as the square n

t

⇥ n

t

Jacobian matrix,

DV =
@V

i

@v

j

=

2

6666664

0 · · ·
@V2
@v1

0 · · ·
@V3
@v1

@V3
@v2

0 · · ·
...

...
.

@V

n

t

@v1

@V

n

t

@v2
· · · @V

n

t

@v

n

t

�1
0

3

7777775
, (15)

where D is a differential operator. The total derivatives of the variables v
i

form another Jacobian matrix of the same
size that has a unit diagonal,

Dv =
dv

i

dv
j

=

2

6666664

1 0 · · ·
dv2
dv1

1 0 · · ·
dv3
dv1

dv3
@v2

1 0 · · ·
...

...
.

dv
n

t

dv1

dv
n

t

dv2
· · · dv

n

t

dv
n

t

�1
1

3

7777775
. (16)

Both of these matrices are lower triangular matrices, due to our assumption that we have unrolled all the loops.
Using this notation, the chain rule (14) can be writen as

Dv = I +DV Dv. (17)

Rearranging this, we obtain,
(I �DV)Dv = I. (18)

where all these matrices are square, with size n ⇥ n. The matrix (I � DV) can be formed by finding the partial
derivatives, and then we can solve for the total derivatives Dv. Since (I �DV) and Dv are inverses of each other,
we can further rearrange it to obtain the transposed system:

(I �DV)T Dv

T = I. (19)

7 of 26

American Institute of Aeronautics and Astronautics

variable function

Assume a given variable depends only on previous one: all loops must be
unrolled

90

Residual Functions and State Variables
Computational model can be represented as a set of residuals of the
governing equations:

state variablesresiduals

The function of interest is:

subset of v that is iterated to achieve the solution of these equations is called the vector of state
variables.

To relate these concepts to the usual conventions in sensitivity analysis, we now separate v into
the independent variables x, state variables y, and quantities of interest f . Using this notation, we
can write the residual equations as

r = R(x,Y (x)) = 0 (4)

where Y (x) denotes the fact that y depends implicitly on x through the solution of the residual
equations (4). It is the solution of these equations that completely determines y for a given x. The
functions of interest (usually included in the set of outputs) also have the same type of variable
dependence in the general case, i.e.,

f = F (x,Y (x)). (5)

When we compute the values f , we assume that the state variables y have already been determined
by the solution of the residual equations (4). The dependencies involved in the computation of the
functions of interest are represented in Fig. 1. Our assumption is that we are ultimately interested
in the total derivatives of f with respect to x.

x

R(x,y) = 0 F (x,y) f

y

x 2 Rn
x

y 2 Rn
y

r 2 Rn
y

f 2 Rn
f

Figure 1: Dependency of the quantities of interest on the independent variables both directly and
through the residual equations that determine the state variables.

B. The Unifying Chain Rule

In this section, we derive and present a matrix equation from which we can obtain all the known
methods for computing the total derivatives of a system. All methods can be derived from this
equation through the appropriate choice of the level of decomposition of the system, since the
methods share a common origin: a basic relationship between partial derivatives and total deriva-
tives.

Consider a set of n variables, denoted v = [v

1

, . . . , v

n

]

T , and n functions, denoted C =

[C

1

(v), . . . , C

n

(v)]

T . The value of v is uniquely defined by the n constraint equations c

i

=

6 of 45

American Institute of Aeronautics and Astronautics

independent variables

subset of v that is iterated to achieve the solution of these equations is called the vector of state
variables.

To relate these concepts to the usual conventions in sensitivity analysis, we now separate v into
the independent variables x, state variables y, and quantities of interest f . Using this notation, we
can write the residual equations as

r = R(x,Y (x)) = 0 (4)

where Y (x) denotes the fact that y depends implicitly on x through the solution of the residual
equations (4). It is the solution of these equations that completely determines y for a given x. The
functions of interest (usually included in the set of outputs) also have the same type of variable
dependence in the general case, i.e.,

f = F (x,Y (x)). (5)

When we compute the values f , we assume that the state variables y have already been determined
by the solution of the residual equations (4). The dependencies involved in the computation of the
functions of interest are represented in Fig. 1. Our assumption is that we are ultimately interested
in the total derivatives of f with respect to x.

x

R(x,y) = 0 F (x,y) f

y

x 2 Rn
x

y 2 Rn
y

r 2 Rn
y

f 2 Rn
f

Figure 1: Dependency of the quantities of interest on the independent variables both directly and
through the residual equations that determine the state variables.

B. The Unifying Chain Rule

In this section, we derive and present a matrix equation from which we can obtain all the known
methods for computing the total derivatives of a system. All methods can be derived from this
equation through the appropriate choice of the level of decomposition of the system, since the
methods share a common origin: a basic relationship between partial derivatives and total deriva-
tives.

Consider a set of n variables, denoted v = [v

1

, . . . , v

n

]

T , and n functions, denoted C =

[C

1

(v), . . . , C

n

(v)]

T . The value of v is uniquely defined by the n constraint equations c

i

=

6 of 45

American Institute of Aeronautics and Astronautics

subset of v that is iterated to achieve the solution of these equations is called the vector of state
variables.

To relate these concepts to the usual conventions in sensitivity analysis, we now separate v into
the independent variables x, state variables y, and quantities of interest f . Using this notation, we
can write the residual equations as

r = R(x,Y (x)) = 0 (4)

where Y (x) denotes the fact that y depends implicitly on x through the solution of the residual
equations (4). It is the solution of these equations that completely determines y for a given x. The
functions of interest (usually included in the set of outputs) also have the same type of variable
dependence in the general case, i.e.,

f = F (x,Y (x)). (5)

When we compute the values f , we assume that the state variables y have already been determined
by the solution of the residual equations (4). The dependencies involved in the computation of the
functions of interest are represented in Fig. 1. Our assumption is that we are ultimately interested
in the total derivatives of f with respect to x.

x

R(x,y) = 0 F (x,y) f

y

x 2 Rn
x

y 2 Rn
y

r 2 Rn
y

f 2 Rn
f

Figure 1: Dependency of the quantities of interest on the independent variables both directly and
through the residual equations that determine the state variables.

B. The Unifying Chain Rule

In this section, we derive and present a matrix equation from which we can obtain all the known
methods for computing the total derivatives of a system. All methods can be derived from this
equation through the appropriate choice of the level of decomposition of the system, since the
methods share a common origin: a basic relationship between partial derivatives and total deriva-
tives.

Consider a set of n variables, denoted v = [v

1

, . . . , v

n

]

T , and n functions, denoted C =

[C

1

(v), . . . , C

n

(v)]

T . The value of v is uniquely defined by the n constraint equations c

i

=

6 of 45

American Institute of Aeronautics and Astronautics

91

One Chain to Rule Them All
Consider a set of variables

After some manipulations, this yields the chain rule

C

i

(v) = 0, for 1  i  n. If we define ¯

C

i

(v) as the linearization of C

i

(v) about the point
v

0, the multivariate Taylor series expansion of the vector-valued function C is

�

¯

c =

@C

@v

�v, (6)

since all higher-order derivatives are zero, and @

¯

C/@v = @C/@v. The solution of the linear
system (6) yields the vector of changes to v required to obtain the perturbations in the linearized
constraints, �

¯

c, assuming @C/@v is invertible.
Since this equation uniquely defines �v for any left-hand side, we choose the vectors of the

standard basis for Rn with the j

th vector multiplied by �c̄

(j), i.e.,

⇥
e

1

�c̄

(1)

�� · · · ��e
j

�c̄

(j)

�� · · · ��e
n

�c̄

(n)

⇤
=

@C

@v

⇥
�v

(1)

�� · · · ���v

(j)

�� · · · ���v

(n)

⇤
, (7)

where each vector �v

(j) represents the changes to v that produce the variation [0, . . . , 0,�c̄

(j)

, 0, . . . , 0]

T .
We now move the scalars �c̄

(j) in Eq. (7) to the right-hand side to obtain

[e

1

| · · · |e
j

| · · · |e
n

] =

@C

@v


�v

(1)

�c̄

(1)

���� · · ·
����
�v

(j)

�c̄

(j)

���� · · ·
����
�v

(n)

�c̄

(n)

�
, (8)

where we now have an identity matrix on the left-hand side.
Alternatively, �v

(j) can be interpreted as the direction in Rn along which only the j

th con-
straint C

j

(v) changes, while all other constraints remain unchanged to the first order. Therefore,
�v

(i)

/�c̄

(j) is the j

th column of the dv/ dc matrix, since it represents the vector of variations in
v that comes about through an implicit dependence on ¯

c, which is perturbed only in the j

th entry.
Thus, the @C/@v and dv/ dc matrices are inverses of each other and they commute, so we

can switch the order and take the transpose to get an alternative form. Therefore, we can write

@C

@v

dv

dc

= I =

@C

@v

T

dv

dc

T

. (9)

We call the left-hand side the forward chain rule and the right-hand side the reverse chain rule.
As we will see throughout the remainder of this paper: All methods for derivative computation can
be derived from one of the forms of the chain rule (9) by changing what we mean by “variables”
and “constraints,” which can be seen as a level of decomposition. We will refer to this equation as
the unifying chain rule.

The derivatives of interest, df/ dx, are typically the derivatives of some of the last variables in
the sequence (v

1

, . . . , v

n

) with respect to some of the first variables in the same sequence. The vari-
ables and constraints are not necessarily in sequence, but we denote them as such for convenience
without loss of generality.

7 of 45

American Institute of Aeronautics and Astronautics

C

i

(v) = 0, for 1  i  n. If we define ¯

C

i

(v) as the linearization of C

i

(v) about the point
v

0, the multivariate Taylor series expansion of the vector-valued function C is

�

¯

c =

@C

@v

�v, (6)

since all higher-order derivatives are zero, and @

¯

C/@v = @C/@v. The solution of the linear
system (6) yields the vector of changes to v required to obtain the perturbations in the linearized
constraints, �

¯

c, assuming @C/@v is invertible.
Since this equation uniquely defines �v for any left-hand side, we choose the vectors of the

standard basis for Rn with the j

th vector multiplied by �c̄

(j), i.e.,

⇥
e

1

�c̄

(1)

�� · · · ��e
j

�c̄

(j)

�� · · · ��e
n

�c̄

(n)

⇤
=

@C

@v

⇥
�v

(1)

�� · · · ���v

(j)

�� · · · ���v

(n)

⇤
, (7)

where each vector �v

(j) represents the changes to v that produce the variation [0, . . . , 0,�c̄

(j)

, 0, . . . , 0]

T .
We now move the scalars �c̄

(j) in Eq. (7) to the right-hand side to obtain

[e

1

| · · · |e
j

| · · · |e
n

] =

@C

@v


�v

(1)

�c̄

(1)

���� · · ·
����
�v

(j)

�c̄

(j)

���� · · ·
����
�v

(n)

�c̄

(n)

�
, (8)

where we now have an identity matrix on the left-hand side.
Alternatively, �v

(j) can be interpreted as the direction in Rn along which only the j

th con-
straint C

j

(v) changes, while all other constraints remain unchanged to the first order. Therefore,
�v

(i)

/�c̄

(j) is the j

th column of the dv/ dc matrix, since it represents the vector of variations in
v that comes about through an implicit dependence on ¯

c, which is perturbed only in the j

th entry.
Thus, the @C/@v and dv/ dc matrices are inverses of each other and they commute, so we

can switch the order and take the transpose to get an alternative form. Therefore, we can write

@C

@v

dv

dc

= I =

@C

@v

T

dv

dc

T

. (9)

We call the left-hand side the forward chain rule and the right-hand side the reverse chain rule.
As we will see throughout the remainder of this paper: All methods for derivative computation can
be derived from one of the forms of the chain rule (9) by changing what we mean by “variables”
and “constraints,” which can be seen as a level of decomposition. We will refer to this equation as
the unifying chain rule.

The derivatives of interest, df/ dx, are typically the derivatives of some of the last variables in
the sequence (v

1

, . . . , v

n

) with respect to some of the first variables in the same sequence. The vari-
ables and constraints are not necessarily in sequence, but we denote them as such for convenience
without loss of generality.

7 of 45

American Institute of Aeronautics and Astronautics

and a set of functions

subset of v that is iterated to achieve the solution of these equations is called the vector of state
variables.

To relate these concepts to the usual conventions in sensitivity analysis, we now separate v into
the independent variables x, state variables y, and quantities of interest f . Using this notation, we
can write the residual equations as

r = R(x,Y (x)) = 0 (4)

where Y (x) denotes the fact that y depends implicitly on x through the solution of the residual
equations (4). It is the solution of these equations that completely determines y for a given x. The
functions of interest (usually included in the set of outputs) also have the same type of variable
dependence in the general case, i.e.,

f = F (x,Y (x)). (5)

When we compute the values f , we assume that the state variables y have already been determined
by the solution of the residual equations (4). The dependencies involved in the computation of the
functions of interest are represented in Fig. 1. Our assumption is that we are ultimately interested
in the total derivatives of f with respect to x.

x

R(x,y) = 0 F (x,y) f

y

x 2 Rn
x

y 2 Rn
y

r 2 Rn
y

f 2 Rn
f

Figure 1: Dependency of the quantities of interest on the independent variables both directly and
through the residual equations that determine the state variables.

B. The Unifying Chain Rule

In this section, we derive and present a matrix equation from which we can obtain all the known
methods for computing the total derivatives of a system. All methods can be derived from this
equation through the appropriate choice of the level of decomposition of the system, since the
methods share a common origin: a basic relationship between partial derivatives and total deriva-
tives.

Consider a set of n variables, denoted v = [v

1

, . . . , v

n

]

T , and n functions, denoted C =

[C

1

(v), . . . , C

n

(v)]

T . The value of v is uniquely defined by the n constraint equations c

i

=

6 of 45

American Institute of Aeronautics and Astronautics

subset of v that is iterated to achieve the solution of these equations is called the vector of state
variables.

To relate these concepts to the usual conventions in sensitivity analysis, we now separate v into
the independent variables x, state variables y, and quantities of interest f . Using this notation, we
can write the residual equations as

r = R(x,Y (x)) = 0 (4)

where Y (x) denotes the fact that y depends implicitly on x through the solution of the residual
equations (4). It is the solution of these equations that completely determines y for a given x. The
functions of interest (usually included in the set of outputs) also have the same type of variable
dependence in the general case, i.e.,

f = F (x,Y (x)). (5)

When we compute the values f , we assume that the state variables y have already been determined
by the solution of the residual equations (4). The dependencies involved in the computation of the
functions of interest are represented in Fig. 1. Our assumption is that we are ultimately interested
in the total derivatives of f with respect to x.

x

R(x,y) = 0 F (x,y) f

y

x 2 Rn
x

y 2 Rn
y

r 2 Rn
y

f 2 Rn
f

Figure 1: Dependency of the quantities of interest on the independent variables both directly and
through the residual equations that determine the state variables.

B. The Unifying Chain Rule

In this section, we derive and present a matrix equation from which we can obtain all the known
methods for computing the total derivatives of a system. All methods can be derived from this
equation through the appropriate choice of the level of decomposition of the system, since the
methods share a common origin: a basic relationship between partial derivatives and total deriva-
tives.

Consider a set of n variables, denoted v = [v

1

, . . . , v

n

]

T , and n functions, denoted C =

[C

1

(v), . . . , C

n

(v)]

T . The value of v is uniquely defined by the n constraint equations c

i

=

6 of 45

American Institute of Aeronautics and Astronautics

subset of v that is iterated to achieve the solution of these equations is called the vector of state
variables.

To relate these concepts to the usual conventions in sensitivity analysis, we now separate v into
the independent variables x, state variables y, and quantities of interest f . Using this notation, we
can write the residual equations as

r = R(x,Y (x)) = 0 (4)

where Y (x) denotes the fact that y depends implicitly on x through the solution of the residual
equations (4). It is the solution of these equations that completely determines y for a given x. The
functions of interest (usually included in the set of outputs) also have the same type of variable
dependence in the general case, i.e.,

f = F (x,Y (x)). (5)

When we compute the values f , we assume that the state variables y have already been determined
by the solution of the residual equations (4). The dependencies involved in the computation of the
functions of interest are represented in Fig. 1. Our assumption is that we are ultimately interested
in the total derivatives of f with respect to x.

x

R(x,y) = 0 F (x,y) f

y

x 2 Rn
x

y 2 Rn
y

r 2 Rn
y

f 2 Rn
f

Figure 1: Dependency of the quantities of interest on the independent variables both directly and
through the residual equations that determine the state variables.

B. The Unifying Chain Rule

In this section, we derive and present a matrix equation from which we can obtain all the known
methods for computing the total derivatives of a system. All methods can be derived from this
equation through the appropriate choice of the level of decomposition of the system, since the
methods share a common origin: a basic relationship between partial derivatives and total deriva-
tives.

Consider a set of n variables, denoted v = [v

1

, . . . , v

n

]

T , and n functions, denoted C =

[C

1

(v), . . . , C

n

(v)]

T . The value of v is uniquely defined by the n constraint equations c

i

=

6 of 45

American Institute of Aeronautics and Astronautics

where the variables are uniquely defined by constraints
C

i

(v) = 0, for 1  i  n. If we define ¯

C

i

(v) as the linearization of C

i

(v) about the point
v

0, the multivariate Taylor series expansion of the vector-valued function C is

�

¯

c =

@C

@v

�v, (6)

since all higher-order derivatives are zero, and @

¯

C/@v = @C/@v. The solution of the linear
system (6) yields the vector of changes to v required to obtain the perturbations in the linearized
constraints, �

¯

c, assuming @C/@v is invertible.
Since this equation uniquely defines �v for any left-hand side, we choose the vectors of the

standard basis for Rn with the j

th vector multiplied by �c̄

(j), i.e.,

⇥
e

1

�c̄

(1)

�� · · · ��e
j

�c̄

(j)

�� · · · ��e
n

�c̄

(n)

⇤
=

@C

@v

⇥
�v

(1)

�� · · · ���v

(j)

�� · · · ���v

(n)

⇤
, (7)

where each vector �v

(j) represents the changes to v that produce the variation [0, . . . , 0,�c̄

(j)

, 0, . . . , 0]

T .
We now move the scalars �c̄

(j) in Eq. (7) to the right-hand side to obtain

[e

1

| · · · |e
j

| · · · |e
n

] =

@C

@v


�v

(1)

�c̄

(1)

���� · · ·
����
�v

(j)

�c̄

(j)

���� · · ·
����
�v

(n)

�c̄

(n)

�
, (8)

where we now have an identity matrix on the left-hand side.
Alternatively, �v

(j) can be interpreted as the direction in Rn along which only the j

th con-
straint C

j

(v) changes, while all other constraints remain unchanged to the first order. Therefore,
�v

(i)

/�c̄

(j) is the j

th column of the dv/ dc matrix, since it represents the vector of variations in
v that comes about through an implicit dependence on ¯

c, which is perturbed only in the j

th entry.
Thus, the @C/@v and dv/ dc matrices are inverses of each other and they commute, so we

can switch the order and take the transpose to get an alternative form. Therefore, we can write

@C

@v

dv

dc

= I =

@C

@v

T

dv

dc

T

. (9)

We call the left-hand side the forward chain rule and the right-hand side the reverse chain rule.
As we will see throughout the remainder of this paper: All methods for derivative computation can
be derived from one of the forms of the chain rule (9) by changing what we mean by “variables”
and “constraints,” which can be seen as a level of decomposition. We will refer to this equation as
the unifying chain rule.

The derivatives of interest, df/ dx, are typically the derivatives of some of the last variables in
the sequence (v

1

, . . . , v

n

) with respect to some of the first variables in the same sequence. The vari-
ables and constraints are not necessarily in sequence, but we denote them as such for convenience
without loss of generality.

7 of 45

American Institute of Aeronautics and Astronautics

Linearizing these functions:

92

Chain Rule in Matrix Form
C

1

v
1

v
1

. . . v
1

v
2

C
2

v
2

. . . v
2

v
3

v
3

C
3

. . . v
3

...
...

...
. . .

...

v
5

v
5

v
5

. . . Cn

v =

v1

v2

.

.

.

v
n

2

6664

3

7775

C(v) =

C1(v1, . . . , vn

)

C2(v1, . . . , vn

)

.

.

.

C
n

(v1, . . . , vn

)

2

6664

3

7775

Variables and Constraints


@C

@v

� 
dv

dc

�
=I =


@C

@v

�
T


dv

dc

�
T

@C1

@v1
. . .

@C1

@v
n

.

.

.

.

.

.

.

.

.

@C
n

@v1
. . .

@C
n

@v
n

2

666664

3

777775

dv1

dc1
. . .

dv1

dc
n

.

.

.

.

.

.

.

.

.

dv
n

dc1
. . .

dv
n

dc
n

2

666664

3

777775
=I =

@C1

@v1

. . .
@C

n

@v1

.

.

.

.

.

.

.

.

.

@C1

@v
n

. . .
@C

n

@v
n

2

666664

3

777775

dv1

dc1
. . .

dv
n

dc1
.

.

.

.

.

.

.

.

.

dv1

dc
n

. . .
dv

n

dc
n

2

666664

3

777775

Derivation

nX

k=1

@C
i

@v
k

dv
k

dc
j

= �
ij

Forward form

nX

k=1

dv
i

dc
k

@C
k

@v
j

= �
ij

Reverse form

Figure 3: Equations for computing total derivatives in a general system of equations.

figures with a common layout. Figure 3 shows the layout for the general case, with no specific
choice of variables or constraints.

In the top box we show the definition of the variables and constraints on the right, and a di-
agram showing the dependence of the constraint functions on the variables on the left. For this
diagram, we use the extended design structure matrix (XDSM) standard developed by Lambe and
Martins [50], which enables the representation of both the data dependency and the procedure
for a given algorithm. The diagonal entries are the functions in the process, and the off-diagonal
entries represent the data. For the purposes of this work, we only need the data dependency in-
formation, which is expressed by the thick gray lines. The XDSM diagram in Figure 3 shows the
constraints or vectors of constraints along the diagonal, and variables or vectors of variables in the
off-diagonal positions. The off-diagonal entry in row i and column j expresses the dependence of
the j

th constraint on the i

th variable.
The middle box is used for the derivation of the method from the unifying chain rule (9). In

this general case, we have no derivation and just expand the matrices in the chain rule. The two
boxes at the bottom show the forward and reverse forms of the method.

12 of 45

American Institute of Aeronautics and Astronautics

93

Chain Rule in Matrix Form
C

1

v
1

v
1

. . . v
1

v
2

C
2

v
2

. . . v
2

v
3

v
3

C
3

. . . v
3

...
...

...
. . .

...

v
5

v
5

v
5

. . . Cn

v =

v1

v2

.

.

.

v
n

2

6664

3

7775

C(v) =

C1(v1, . . . , vn

)

C2(v1, . . . , vn

)

.

.

.

C
n

(v1, . . . , vn

)

2

6664

3

7775

Variables and Constraints


@C

@v

� 
dv

dc

�
=I =


@C

@v

�
T


dv

dc

�
T

@C1

@v1
. . .

@C1

@v
n

.

.

.

.

.

.

.

.

.

@C
n

@v1
. . .

@C
n

@v
n

2

666664

3

777775

dv1

dc1
. . .

dv1

dc
n

.

.

.

.

.

.

.

.

.

dv
n

dc1
. . .

dv
n

dc
n

2

666664

3

777775
=I =

@C1

@v1

. . .
@C

n

@v1

.

.

.

.

.

.

.

.

.

@C1

@v
n

. . .
@C

n

@v
n

2

666664

3

777775

dv1

dc1
. . .

dv
n

dc1
.

.

.

.

.

.

.

.

.

dv1

dc
n

. . .
dv

n

dc
n

2

666664

3

777775

Derivation

nX

k=1

@C
i

@v
k

dv
k

dc
j

= �
ij

Forward form

nX

k=1

dv
i

dc
k

@C
k

@v
j

= �
ij

Reverse form

Figure 3: Equations for computing total derivatives in a general system of equations.

figures with a common layout. Figure 3 shows the layout for the general case, with no specific
choice of variables or constraints.

In the top box we show the definition of the variables and constraints on the right, and a di-
agram showing the dependence of the constraint functions on the variables on the left. For this
diagram, we use the extended design structure matrix (XDSM) standard developed by Lambe and
Martins [50], which enables the representation of both the data dependency and the procedure
for a given algorithm. The diagonal entries are the functions in the process, and the off-diagonal
entries represent the data. For the purposes of this work, we only need the data dependency in-
formation, which is expressed by the thick gray lines. The XDSM diagram in Figure 3 shows the
constraints or vectors of constraints along the diagonal, and variables or vectors of variables in the
off-diagonal positions. The off-diagonal entry in row i and column j expresses the dependence of
the j

th constraint on the i

th variable.
The middle box is used for the derivation of the method from the unifying chain rule (9). In

this general case, we have no derivation and just expand the matrices in the chain rule. The two
boxes at the bottom show the forward and reverse forms of the method.

12 of 45

American Institute of Aeronautics and Astronautics

94

Monolithic Differentiation

x� x

0

x

f � F

v =

x

f

 �

C(v) =

x � x

0

f � F (x)

 �

Variables and Constraints


@C

@v

� 
dv

dc

�
=I =


@C

@v

�
T


dv

dc

�
T

@(x � x

0
)

@x

@(x � x

0
)

@f
@(f � F)

@x

@(f � F)

@f

2

664

3

775

dx

dx

dx

df

df

dx

df

df

2

664

3

775 =I =

@(x � x

0
)

@x

T

@(f � F)

@x

T

@(x � x

0
)

@f

T

@(f � F)

@f

T

2

664

3

775

dx

dx

T

df

dx

T

dx

df

T

df

df

T

2

664

3

775

I 0

�
@F

@x
I

2

4

3

5
I 0

df

dx

I

2

4

3

5
=I =

I �
@F

@x

T

0 I

2

4

3

5 I

df

dx

T

0 I

2

4

3

5

Derivation

df

dx

=

@F

@x

Monolithic di↵erentiation (from forward form)

df

dx

=

@F

@x

Monolithic di↵erentiation (from reverse form)

Figure 5: Monolithic (black box) differentiation.

inputs, i.e., the Jacobian,
df

dx

=

"
df

1

dx

1

df

1

dx

2

df

2

dx

1

df

2

dx

2

#
. (19)

A. Monolithic Differentiation

In monolithic differentiation, the entire computational model is treated as a “black box.” This
may be the only option in cases for which the source code is not available, or if it is not deemed
worthwhile to implement more sophisticated approaches for computing the derivatives.

In monolithic differentiation, the only variables that are tracked are the inputs x and the outputs
f . Thus, the variables are defined as v = [x

T

,f

T

]

T , as shown in Fig. 5. The constraints are just
the residuals of the inputs and outputs, i.e., the differences between the actual values of the vari-
ables and the corresponding functions. Thus, the input variables x are simply forced to match the
specified values x0, and the output variables f are forced to match the results of the computational
model, F .

The result of replacing these definitions of the variables and constraints is rather simple; we
just obtain

df

i

dx

j

=

@F

i

@x

j

(20)

14 of 45

American Institute of Aeronautics and Astronautics

95

Monolithic Differentiation

x� x

0

x

f � F

v =

x

f

 �

C(v) =

x � x

0

f � F (x)

 �

Variables and Constraints


@C

@v

� 
dv

dc

�
=I =


@C

@v

�
T


dv

dc

�
T

@(x � x

0
)

@x

@(x � x

0
)

@f
@(f � F)

@x

@(f � F)

@f

2

664

3

775

dx

dx

dx

df

df

dx

df

df

2

664

3

775 =I =

@(x � x

0
)

@x

T

@(f � F)

@x

T

@(x � x

0
)

@f

T

@(f � F)

@f

T

2

664

3

775

dx

dx

T

df

dx

T

dx

df

T

df

df

T

2

664

3

775

I 0

�
@F

@x
I

2

4

3

5
I 0

df

dx

I

2

4

3

5
=I =

I �
@F

@x

T

0 I

2

4

3

5 I

df

dx

T

0 I

2

4

3

5

Derivation

df

dx

=

@F

@x

Monolithic di↵erentiation (from forward form)

df

dx

=

@F

@x

Monolithic di↵erentiation (from reverse form)

Figure 5: Monolithic (black box) differentiation.

inputs, i.e., the Jacobian,
df

dx

=

"
df

1

dx

1

df

1

dx

2

df

2

dx

1

df

2

dx

2

#
. (19)

A. Monolithic Differentiation

In monolithic differentiation, the entire computational model is treated as a “black box.” This
may be the only option in cases for which the source code is not available, or if it is not deemed
worthwhile to implement more sophisticated approaches for computing the derivatives.

In monolithic differentiation, the only variables that are tracked are the inputs x and the outputs
f . Thus, the variables are defined as v = [x

T

,f

T

]

T , as shown in Fig. 5. The constraints are just
the residuals of the inputs and outputs, i.e., the differences between the actual values of the vari-
ables and the corresponding functions. Thus, the input variables x are simply forced to match the
specified values x0, and the output variables f are forced to match the results of the computational
model, F .

The result of replacing these definitions of the variables and constraints is rather simple; we
just obtain

df

i

dx

j

=

@F

i

@x

j

(20)

14 of 45

American Institute of Aeronautics and Astronautics

96

Algorithmic Differentiation
t
1

� T
1

t
1

t
1

. . . t
1

t
2

� T
2

t
2

. . . t
2

t
3

� T
3

. . . t
3

. . .
...

tn � Tn

v =

t1
t2
.

.

.

t
n

2

6664

3

7775

C(v) =

t1 � T1()

t2 � T2(t1)

.

.

.

t
n

� T
n

(t1, . . . , tn�1)

2

6664

3

7775

Variables and Constraints


@C

@v

� 
dv

dc

�
=I =


@C

@v

�
T


dv

dc

�
T

1 0 . . . 0

�
@T2

@t1
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

�
@T

n

@t1
. . .�

@T
n

@t
n�1

1

2

66666666664

3

77777777775

1 0 . . . 0

dt2

dt1
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

dt
n

dt1
. . .

dt
n

dt
n�1

1

2

66666666664

3

77777777775

=I =

1�
@T2

@t1
. . . �

@T
n

@t1

0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. �
@T

n

@t
n�1

0 . . . 0 1

2

66666666664

3

77777777775

1

dt2

dt1
. . .

dt
n

dt1

0 1

.

.

.

.

.

.

.

.

.

.

.

.

1

dt
n

dt
n�1

0 . . . 0 1

2

66666666664

3

77777777775

Derivation

dt
i

dt
j

= �
ij

+

i�1X

k=j

@T
i

@t
k

dt
k

dt
j

Forward mode AD

dt
i

dt
j

= �
ij

+

iX

k=j+1

dt
i

dt
k

@T
k

@t
j

Reverse mode AD

Figure 7: Derivation of algorithmic differentiation.

corresponding function values. Using these definitions in the unifying chain rule, we obtain a
matrix equation, where the matrix that contains the unknowns (the total derivatives that we want to
compute) is either lower triangular or upper triangular. The lower triangular system corresponds to
the forward mode and can be solved using forward substitution, while the upper triangular system
corresponds to the reverse mode of AD and can be solved using back substitution.

These matrix equations can be rewritten as shown at the bottom of Fig. 7. The equation on
the left represents forward-mode AD. In this case, we choose one t

j

and keep j fixed. Then we
work our way forward in the index i = 1, 2, . . . , n until we get the desired total derivative. In the
process, we obtain a whole column of the lower triangular matrix, i.e., the derivatives of all the
variables with respect to the chosen variable.

Using the reverse mode, shown on the bottom right of Fig. 7, we choose a t

i

(the quantity we
want to differentiate) and work our way backward in the index j = n, n�1, . . . , 1 all of the way to
the independent variables. This corresponds to obtaining a column of the upper triangular matrix,
i.e., the derivatives of the chosen quantity with respect to all other variables.

17 of 45

American Institute of Aeronautics and Astronautics

97

AD Example

Numerical Example

April 21, 2012

Problem

2 input variables x

1

x

2

2 state variables y

1

y

2

2 residuals R

1

(x

1

, x

2

, y

1

, y

2

) = x

1

y

1

+ 2y

2

� sin x

1

R

2

(x

1

, x

2

, y

1

, y

2

) = �y

1

+ x

2

2

y

2

2 output functions F

1

(x

1

, x

2

, y

1

, y

2

) = y

1

F

2

(x

1

, x

2

, y

1

, y

2

) = y

2

sin x

1

Internal Coupling

x

1

2

�1 x

2

2

� 
y

1

y

2

�
=


sin x

1

0

�

Pseudocode

function f=f(x1,x2)

det = 2+x1*x2**2

y1 = x2**2* sin(x1)/det

y2 = sin(x1)/det

f1 = y1

f2 = y2*sin(x1)

return f1 , f2

end function f

Objective

At the point (x

1

, x

2

) = (1, 1), we wish to compute

"
df1

dx1

df1

dx2
df2

dx1

df2

dx2

#

1

Equations for presentation

FUNCTION F(x)

REAL :: x(2), det , y(2), f(2)

det = 2 + x(1)*x(2)**2

y(1) = x(2) **2* SIN(x(1))/det

y(2) = SIN(x(1))/det

f(1) = y(1)

f(2) = y(2)*SIN(x(1))

RETURN

END FUNCTION F

() Numerical Example April 21, 2012 0 / 0

98

Forward AD
Equations for presentation

FUNCTION F_D(x, xd , f)

REAL :: x(2), xd(2)

REAL :: det , detd

REAL :: y(2), yd(2)

REAL :: f(2), f_d (2)

detd = xd(1)*x(2) **2 + x(1) *2*x(2)*xd(2)

det = 2 + x(1)*x(2)**2

yd = 0.0

yd(1) = ((2*x(2)*xd(2)*SIN(x(1))+x(2) **2*xd(1)*COS(x(1)))*det -

x(2) **2*&

& SIN(x(1))*detd)/det **2

y(1) = x(2) **2* SIN(x(1))/det

yd(2) = (xd(1)*COS(x(1))*det -SIN(x(1))*detd)/det **2

y(2) = SIN(x(1))/det

f_d = 0.0

f_d (1) = yd(1)

f(1) = y(1)

f_d (2) = yd(2)*SIN(x(1)) + y(2)*xd(1)*COS(x(1))

f(2) = y(2)*SIN(x(1))

RETURN

END FUNCTION F_D

function f(x1 ,x2)

det = 2+x1*x2**2

y1 = x2**2* sin(x1)/det

y2 = sin(x1)/det

() Numerical Example April 21, 2012 0 / 0

Equations for presentation

FUNCTION F(x)

REAL :: x(2), det , y(2), f(2)

det = 2 + x(1)*x(2)**2

y(1) = x(2) **2* SIN(x(1))/det

y(2) = SIN(x(1))/det

f(1) = y(1)

f(2) = y(2)*SIN(x(1))

RETURN

END FUNCTION F

() Numerical Example April 21, 2012 0 / 0

Equations for presentation

SUBROUTINE F_B(x, xb , fb)

REAL :: x(2), xb(2),

REAL :: y(2), yb(2)

REAL :: f(2), fb(2)

REAL :: det , detb , tempb , temp

det = 2 + x(1)*x(2)**2

y(1) = x(2) **2* SIN(x(1))/det

y(2) = SIN(x(1))/det

xb = 0.0

yb = 0.0

yb(2) = yb(2) + SIN(x(1))*fb(2)

xb(1) = xb(1) + y(2)*COS(x(1))*fb(2)

fb(2) = 0.0

yb(1) = yb(1) + fb(1)

xb(1) = xb(1) + COS(x(1))*yb(2)/det

detb = -(SIN(x(1))*yb(2)/det **2)

yb(2) = 0.0

tempb = SIN(x(1))*yb(1)/det

temp = x(2) **2/ det

xb(2) = xb(2) + 2*x(2)*tempb

detb = detb - temp*tempb

xb(1) = xb(1) + x(2) **2* detb + temp*COS(x(1))*yb(1)

xb(2) = xb(2) + x(1)*2*x(2)*detb

END SUBROUTINE F_B

function f(x1 ,x2)

() Numerical Example April 21, 2012 0 / 0

99

Reverse AD
Equations for presentation

FUNCTION F(x)

REAL :: x(2), det , y(2), f(2)

det = 2 + x(1)*x(2)**2

y(1) = x(2) **2* SIN(x(1))/det

y(2) = SIN(x(1))/det

f(1) = y(1)

f(2) = y(2)*SIN(x(1))

RETURN

END FUNCTION F

() Numerical Example April 21, 2012 0 / 0

100

AD Example: Forward and Reverse

5 Fixed AD

v

1

= x

1

v

2

= x

2

v

3

= 2 + v

1

v

2

2

v

4

=

v

2

2

sin v

1

v

3

v

5

=

sin v

1

v

3

v

6

= v

4

v

7

= v

5

sin v

1

2

666666664

1 0 0 0 0 0 0

0 1 0 0 0 0 0

�1 �2 1 0 0 0 0

�0.18 �0.561 0.093 1 0 0 0

�0.18 0 0.093 0 1 0 0

0 0 0 �1 0 1 0

�0.152 0 0 0 �0.841 0 1

3

777777775

2

666666664

1 0

0 1

1 2

0.087 0.374

0.087 �0.187

0.087 0.374

0.224 �0.157

3

777777775

=

2

666666664

1 0

0 1

0 0

0 0

0 0

0 0

0 0

3

777777775

2

666666664

1 0 �1 �0.18 �0.18 0 �0.152

0 1 �2 �0.561 0 0 0

0 0 1 0.093 0.093 0 0

0 0 0 1 0 �1 0

0 0 0 0 1 0 �0.841

0 0 0 0 0 1 0

0 0 0 0 0 0 1

3

777777775

2

666666664

0.087 0.224

0.374 �0.157

�0.093 �0.079

1 0

0 0.841

1 0

0 1

3

777777775

=

2

666666664

0 0

0 0

0 0

0 0

0 0

1 0

0 1

3

777777775

101

Analytic Methods
x� x

0

x x

r �R

y

f � F

v =

x

y

f

2

4

3

5

C(v) =

x � x

0

r � R(x,y)

f � F (x,y)

2

4

3

5

Variables and Constraints


@C

@v

� 
dv

dc

�
=I =


@C

@v

�
T


dv

dc

�
T

@(x � x

0
)

@x

@(x � x

0
)

@y

@(x � x

0
)

@f
@(r � R)

@x

@(r � R)

@y

@(r � R)

@f
@(f � F)

@x

@(f � F)

@y

@(f � F)

@f

2

6666664

3

7777775

dx

dx

dx

dr

dx

df

dy

dx

dy

dr

dy

df

df

dx

df

dr

df

df

2

666664

3

777775
=I =

@(x � x

0
)

@x

T

@(r � R)

@x

T @(f � F)

@x

T

@(x � x

0
)

@y

T

@(r � R)

@y

T @(f � F)

@y

T

@(x � x

0
)

@f

T

@(r � R)

@f

T @(f � F)

@f

T

2

66666664

3

77777775

dx

dx

T

dy

dx

T

df

dx

T

dx

dr

T

dy

dr

T

df

dr

T

dx

df

T

dy

df

T

df

df

T

2

666664

3

777775

I 0 0

�
@R

@x
�

@R

@y
0

�
@F

@x
�

@F

@y
I

2

66664

3

77775

I 0 0
dy

dx

dy

dr

0

df

dx

df

dr

I

2

6664

3

7775
=I =

I �
@R

@x

T

�
@F

@x

T

0 �
@R

@y

T

�
@F

@y

T

0 0 I

2

66664

3

77775

I

dy

dx

T

df

dx

T

0
dy

dr

T

df

dr

T

0 0 I

2

6664

3

7775

Derivation

@R

@y

dy

dx

= �
@R

@x

df

dx

=

@F

@x
+

@F

@y

dy

dx

Direct method

@R

@y

T

df

dr

T

= �
@F

@y

T

df

dx

=

@F

@x
+

df

dr

@R

@x

Adjoint method

Figure 11: Derivation of the analytic methods: direct and adjoint.

that the time-dependent adjoint equations need to be solved using block back substitution, starting
from the last time instance. Because the adjoint equations depend on the states themselves, we
must store the complete time history of the states when the time-dependent solution of the states
is obtained. More details on the time-dependent adjoint method and proposed solutions to handle
the memory requirements have been presented by various authors [87, 88, 89].

D. Coupled Analytic Methods

We now extend the analytic methods derived in the previous section to multidisciplinary systems.
The direct and adjoint methods for multidisciplinary systems can be derived by partitioning the
various variables by discipline as follows:

R = [R

T

1

, . . . ,R

T

N

]

T

, y = [y

T

1

, . . . ,y

T

N

]

T (36)

where N is the number of disciplines. All the design variables are included in x. If we substitute
these vectors into the unifying chain rule, we obtain the block matrix equations shown at the bottom

29 of 45

American Institute of Aeronautics and Astronautics

102

Analytic Methods: Direct vs. Adjoint
From forward chain rule Solution From reverse chain rule

I 0 0

�
@R

@x
�

@R

@y
0

�
@F

@x
�

@F

@y
I

2

66664

3

77775

I

dy

dx

df

dx

2

6664

3

7775
=

I

0
0

2

4

3

5 df

dx

=

@F

@x
�

@F

@y


@R

@y

��1 @R

@x

I�
@R

@x

T

�
@F

@x

T

0�
@R

@y

T

�
@F

@y

T

0 0 I

2

66664

3

77775

df

dx

T

df

dr

T

I

2

6664

3

7775
=

0
0
I

2

4

3

5

=

= �

n
x

< n
f

=

=

= �

n
x

> n
f

=

Direct method Adjoint method

df

dx

=

@F

@x
+

@F

@y

dy

dx

�
@R

@y

dy

dx

=

@R

@x

df

dx

=

@F

@x
+

df

dr

@R

@x
�

@R

@y

T

df

dr

T

=

@F

@y

T

= + � = n
x

< n
f

= + � =

= +
� = n

x

> n
f

= +
� =

Figure 10: Block matrix diagrams illustrating the structure of the direct and adjoint equations,
assuming that n

y

� n

x

, n

f

. The blue matrices contain partial derivatives, which are relatively
cheap to compute, and the red matrices contain the total derivatives computed by solving the linear
systems.

2. Direct Method

The direct method involves solving the linear system with �@R/@x as the right-hand side vector,
which results in the linear system (32). This linear system needs to be solved for n

x

right-hand
sides to get the full Jacobian matrix dy/ dx. Then, we can use dy/ dx in Eq. (30) to obtain the
derivatives of interest, df/ dx.

As in the case of finite differences, the cost of computing derivatives with the direct method is
proportional to the number of design variables, n

x

. In a case where the computational model is a
nonlinear system, the direct method can be advantageous. Both methods require the solution of a
system of the same size n

x

times, but the direct method just solves the linear system (32), while
the finite-difference method solves the original nonlinear system (4). Even though the various
solutions required for the finite-difference method can be warm-started from a previous solution,
a nonlinear solution will typically require multiple iterations to converge. The direct method is
even more advantageous when a factorization of @R/@y is available, since each solution of the
linear system consists in an inexpensive back substitution. There are some cases where a hybrid
approach that combines the direct and adjoint methods is advantageous [79].

25 of 45

American Institute of Aeronautics and Astronautics

[Martins and Hwang, AIAAJ, 2013]

http://mdolab.engin.umich.edu/content/review-and-unification-discrete-methods-computing-derivatives-single-and-multi-disciplinary

103

Coupled Analytic Methods: Residual Form
x� x

0

x

. . .
x x

r

1

�R

1

. . .
y

1

y

1

...
. . .

...
...

yN . . . rN �RN yN

f � F

v =

x

y1

.

.

.

y

N

f

2

666664

3

777775

C(v) =

x � x

0

r1 � R1(x,y1, . . . ,yN

)

.

.

.

r

N

� R

N

(x,y1, . . . ,yN

)

f � F (x,y1, . . . ,yN

)

2

666664

3

777775

Variables and Constraints


@C

@v

� 
dv

dc

�
=I =


@C

@v

�
T


dv

dc

�
T

I 0 . . . 0 0

�
@R1

@x
�

@R1

@y1

. . . �
@R1

@y
N

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�
@R

N

@x
�

@R
N

@y1

. . .�
@R

N

@y
N

0

�
@F

@x
�

@F

@y1

. . . �
@F

@y
N

I

2

6666666666664

3

7777777777775

I 0 . . . 0 0
dy1

dx

dy1

dr1

. . .
dy1

dr

N

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

dy

N

dx

dy

N

dr1

. . .
dy

N

dr

N

0

df

dx

df

dr1

. . .
df

dr

N

I

2

6666666666664

3

7777777777775

=I=

I �
@R1

@x

T

. . . �
@R

N

@x

T

�
@F

@x

T

0 �
@R1

@y1

T

. . . �
@R

N

@y1

T

�
@F

@y1

T

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 �
@R1

@y
N

T

. . . �
@R

N

@y
N

T

�
@F

@y
N

T

0 0 0 0 I

2

6666666666664

3

7777777777775

I

dy1

dx

T

. . .
dy

N

dx

T

df

dx

T

0
dy1

dr1

T

. . .
dy

N

dr1

T

df

dr1

T

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0
dy1

dr

N

T

. . .
dy

N

dr

N

T

df

dr

N

T

0 0 0 0 I

2

6666666666664

3

7777777777775

Derivation

@R1

@y1

. . .
@R1

@y
N

.

.

.

.

.

.

.

.

.

@R
N

@y1

. . .
@R

N

@y
N

2

666664

3

777775

dy1

dx

.

.

.

dy

N

dx

2

66664

3

77775
= �

@R1

@x
.

.

.

@R
N

@x

2

66664

3

77775

df

dx

=

@F

@x
+

@F

@y1

. . .
@F

@y
N

 �
dy1

dx

.

.

.

dy

N

dx

2

66664

3

77775

Coupled direct: residual form

@R1

@y1

T

. . .
@R

N

@y1

T

.

.

.

.

.

.

.

.

.

@R1

@y
N

T

. . .
@R

N

@y
N

T

2

6666664

3

7777775

df

dr1

T

.

.

.

df

dr

N

T

2

6666664

3

7777775
= �

@F

@y1

T

.

.

.

@F

@y
N

T

2

6666664

3

7777775

df

dx

=

@F

@x
+

df

dr1

. . .
df

dr

N

 �
@R1

@x
.

.

.

@R
N

@x

2

66664

3

77775

Coupled adjoint: residual form

Figure 12: Derivations of the residual form of the coupled derivative methods.

43 of 45

American Institute of Aeronautics and Astronautics

104

Coupled Analytic Methods: Functional Form
x� x

0

x

. . .
x x

y

1

� Y

1

. . .
y

1

y

1

...
. . .

...
...

yN . . . yN � YN yN

f � F

v =

x

y1

.

.

.

y

N

f

2

666664

3

777775

C(v) =

x � x

0

y1 � Y1(x,y2, . . . ,yN

)

.

.

.

y

N

� Y

N

(x,y1, . . . ,yN�1)

f � F (x,y1, . . . ,yN

)

2

666664

3

777775

Variables and Constraints


@C

@v

� 
dv

dc

�
=I =


@C

@v

�
T


dv

dc

�
T

I 0 . . . 0 0

�
@Y1

@x
I . . .�

@Y1

@y
N

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�
@Y

N

@x
�

@Y
N

@y1

. . . I 0

�
@F

@x
�

@F

@y1

. . .�
@F

@y
N

I

2

6666666666664

3

7777777777775

I 0 . . . 0 0
dy1

dx

I . . .
dy1

dy

N

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

dy

N

dx

dy

N

dy1

. . . I 0

df

dx

df

dy1

. . .
df

dy

N

I

2

6666666666664

3

7777777777775

=I=

I �
@Y1

@x

T

. . . �
@Y

N

@x

T

�
@F

@x

T

0 I . . . �
@Y

N

@y1

T

�
@F

@y1

T

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0�
@Y1

@y
N

T

. . . I �
@F

@y
N

T

0 0 0 0 I

2

6666666666664

3

7777777777775

I

dy1

dx

T

. . .
dy

N

dx

T

df

dx

T

0 I . . .
dy

N

dy1

T

df

dy1

T

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0
dy1

dy

N

T

. . . I

df

dy

N

T

0 0 0 0 I

2

6666666666664

3

7777777777775

Derivation

I . . .�
@Y1

@y
N

.

.

.

.

.

.

.

.

.

�
@Y

N

@y1

. . . I

2

666664

3

777775

dy1

dx

.

.

.

dy

N

dx

2

66664

3

77775
=

@Y1

@x
.

.

.

@Y
N

@x

2

66664

3

77775

df

dx

=

@F

@x
+

@F

@y1

. . .
@F

@y
N

 �
dy1

dx

.

.

.

dy

N

dx

2

66664

3

77775

Coupled direct: functional form

I . . .�
@Y

N

@y1

T

.

.

.

.

.

.

.

.

.

�
@Y1

@y
N

T

. . . I

2

6666664

3

7777775

df

dy1

T

.

.

.

df

dy

N

T

2

6666664

3

7777775
=

@F

@y1

T

.

.

.

@F

@y
N

T

2

6666664

3

7777775

df

dx

=

@F

@x
+

df

dy1

. . .
df

dy

N

 �
@Y1

@x
.

.

.

@Y
N

@x

2

66664

3

77775

Coupled adjoint: functional form

Figure 13: Derivation of the functional form of the coupled derivative methods.

44 of 45

American Institute of Aeronautics and Astronautics

105

Application of Coupled Adjoint Derivatives

[Kenway, Kennedy and Martins, AIAA Journal, 2013]

http://arc.aiaa.org/doi/full/10.2514/1.J052255

106

Computational framework for gradient-based MDAO

[Hwang et al., AIAA SDM, 2013]

Application to MDO of small satellite

Solar
Disciplines: Orbit dynamics • Attitude control • Solar • Thermal • Electrical • Battery • Communication

I 7 cells per panel; 4 panels on the body, 8 more on the fins
I Table of areas pre-computed using OpenGL; fitted

Hwang, Lee, Cutler, and Martins Small Satellite MDO 12/ 45

Solar
Disciplines: Orbit dynamics • Attitude control • Solar • Thermal • Electrical • Battery • Communication

I 7 cells per panel; 4 panels on the body, 8 more on the fins
I Table of areas pre-computed using OpenGL; fitted

0

/ / 2
ˆb e s ec r r u

Sun
Earth 1

/b er

c

sLOS
/s er

Hwang, Lee, Cutler, and Martins Small Satellite MDO 12/ 45

Coupled System Solver
MDO Framework: Overview • Conceptual description • Theory • Numerical aspects • Significance

@C1/@v

...

@CN/@v

| {z }
(4)

M�1
1

. . .

M�1
N

| {z }
(3)

y1

...

yN

= �

C1

...

CN

 �

|{z}
(2)

v⇤1

...

v⇤N

 �

|{z}
(1)

v1

...

vN

Component Jacobian Preconditioner solve
(4) (3) (1)

Triangular Exact Back subst. Exact solve
Preconditioned Exact Preconditioner No action
Factorized Exact Exact inverse No action
Jacobian-free Directional derivative No action

Hwang, Lee, Cutler, and Martins Small Satellite MDO 26/ 45Optimization Problem

Orbit dynamics Position Position

Attitude control Torque

Attitude dynamics Attitude Attitude

Solar Exp. area Exp. area

Thermal Temperature Temperature

Electrical Solar power

Avail. power Battery

Desired att. Communication

Hwang, Lee, Cutler, and Martins Small Satellite MDO 31/ 45

Used to solve for millions of states and tens of
thousands of design variables

http://mdolab.engin.umich.edu/content/large-scale-mdo-small-satellite-using-novel-framework-solution-coupled-systems-and-their

107

Further Reading

http://mdolab.engin.umich.edu/publications

Martins and Lambe, “Multidisciplinary Design Optimization : A Survey of Architectures”,
AIAAJ, 2013 (In press)

Martins and Hwang, “Review and Unification of Discrete Methods for Computing
Derivatives of Single- and Multi-disciplinary Computational Models”, AIAAJ, 2013 (In press)

http://mdolab.engin.umich.edu/publications
http://mdolab.engin.umich.edu/content/multidisciplinary-design-optimization-survey-architectures-1
http://mdolab.engin.umich.edu/content/review-and-unification-discrete-methods-computing-derivatives-single-and-multi-disciplinary

1. J. R. R. A. Martins and J. T. Hwang. Review and unification of methods for computing derivatives of
multidisciplinary computational models. AIAA Journal, 51(11):2582–2599, November 2013. doi:
10.2514/1.J052184.

2. J. R. R. A. Martins and A. B. Lambe. Multidisciplinary design optimization: A survey of architectures. AIAA
Journal, 51(9):2049–2075, September 2013. doi:10.2514/1.J051895.

3. J. T. Hwang, D. Y. Lee, J. W. Cutler, and J. R. R. A. Martins. Large-scale multidisciplinary optimization of a small
satellite’s design and operation. Journal of Spacecraft and Rockets, 51(5):1648–1663, September 2014. doi:
10.2514/1.A32751.

4. G. K. W. Kenway and J. R. R. A. Martins. Multipoint high-fidelity aerostructural optimization of a transport
aircraft configuration. Journal of Aircraft, 51(1):144–160, January 2014. doi:10.2514/1.C032150.

5. G. K. W. Kenway, G. J. Kennedy, and J. R. R. A. Martins. Scalable parallel approach for high-fidelity steady-
state aeroelastic analysis and derivative computations. AIAA Journal, 52(5):935–951, May 2014. doi:
10.2514/1.J052255.

6. R. E. Perez, P. W. Jansen, and J. R. R. A. Martins. pyOpt: a Python-based object-oriented framework for
nonlinear constrained optimization. Structural and Multidisciplinary Optimization, 45(1):101–118, January 2012.
doi:10.1007/s00158-011-0666-3.

7. J. T. Hwang, S. Roy, J. Y. Kao, J. R. R. A. Martins, and W. A. Crossley. Simultaneous aircraft allocation and
mission optimization using a modular adjoint approach. In Proceedings of the 56th AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Kissimmee, FL, Jan. 2015. AIAA 2015-0900.

8. J. Y. Kao, J. T. Hwang, J. R. R. A. Martins, J. S. Gray, and K. T. Moore. A modular adjoint approach to aircraft
mission analysis and optimization. In Proceedings of the AIAA Science and Technology Forum and Exposition
(SciTech), Kissimmee, FL, January 2015. AIAA 2015-0136.

Other Relevant publications

	2016-03-ISAE_MDO_Intro
	2016-05_VKI_part_1
	2016-05_VKI_part_2

