A Very Short Course on
Multidisciplinary Design Optimization

2.

m Anab;sis 1

m Anab;sis 2

m Anaf};sis 3
m Tt Fung;ions
4 .
0 Joaquim R.R.A.Martins * John T. Hwang ’
-

g’ 0 Multidisciplinary Design Optimization Laboratory P Spbs 5 hinn e e s

< http://mdolab.engin.umich.edu SUPAER

MARIE CURIE


http://mdolab.engin.umich.edu

Vitae

“)‘;— ‘::'::-".\
/f““" N0 2 *
io) A Val
. 5

£ n
n | f“% (2
. *\", 4 Y = ' Tv"‘"l
& 2 WO SN 4 )
¢ J*\‘ > ) \'S?GAMZ{-D ‘_b?éy 'l“lllllllllll“l'
. N A P
Bio o

* 1991-1995: M.Eng. in Aeronautics, Imperial College, London, UK
* 1996-2002: M.5Sc. and Ph.D. in Aeronautics and Astronautics, Stanford University

e 2002-2008: Assistant Professor, University of Toronto, Institute for Aerospace Studies

* 2008-2009: Associate Professor, University of Toronto, Institute for Aerospace Studies

e 2009-2015 : Associate Professor, University of Michigan, Dept. of Aerospace Engineering
e 2015—: Professor, University of Michigan, Dept. of Aerospace Engineering

e 2015-2016: Professeur Invité, ISAE-SUPAERO

Highlights
* 4 best papers at the AIAA Multidisciplinary Analysis and Optimization Conference (2002, 2006, 2012, 2014)
e Canada Research Chair in Multidisciplinary Optimization (2002—-2009)
» Keynote speaker at the International Forum on Aeroelasticity and Structural Dynamics (Stockholm, 2007)
» Keynote speaker at the Aircraft Structural Design Conference (London, 2010)
» Associate editor for Optimization and Engineering, Structural and Multidisciplinary Optimization

* Marie Curie Fellow (2015-2016)



Design
Optimization



What is Multidisciplinary Design Optimization — MDO?’
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Design Variables, Objective Function, and Constraints
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Multidisciplinary Design Optimization Introduction

Introduction 1

» In the last few decades, numerical models that predict the performance of
engineering systems have been developed, and many of these models are now
mature areas of research. For example . ..

» Once engineers can predict the effect that changes in the design have on the
performance of a system, the next logical question is what changes in the
design produced optimal performance. The application of the numerical
optimization techniques described in the preceding chapters address this
question.

» Single-discipline optimization is in some cases quite mature, but the design
and optimization of systems that involve more than one discipline is still in its
infancy.

» When systems are composed of multiple systems, additional issues arise in
both the analysis and design optimization.

» MDO researchers think industry will not adopt MDO more widely because
they do not realize their utility.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 4 /75




Multidisciplinary Design Optimization Introduction

Introduction 2

» Industry think that researchers are not presenting anything new, since
industry has already been doing multidisciplinary design.

» There is some truth to each of these perspectives ...

» Real-world aerospace design problem may involve thousands of variables and
hundreds of analyses and engineers, and it is often difficult to apply the
numerical optimization techniques and solve the mathematically correct
optimization problems.

» The kinds of problems in industry are often of much larger scale, involve
much uncertainty, and include human decisions in the loop, making them
difficult to solve with traditional numerical optimization techniques.

» On the other hand, a better understanding of MDO by engineers in industry
Is now contributing a more widespread use in practical design.

Why MDQO?

» Parametric trade studies are subject to the “curse of dimensionality” .

» lterated procedures for which convergence is not guaranteed.

» Sequential optimization that does not lead to the true optimum of the system

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 5/ 75



Multidisciplinary Design Optimization Introduction

Introduction 3
Objectives of MDO:

» Avoid difficulties associated with sequential design or partial optimization.

» Provide more efficient and robust convergence than by simple iteration.
» Aid in the management of the design process.
Difficulties of MDO:
» Communication and translation
Time

>
» Scheduling and planning
>

Implementation

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 6/ 75



Multidisciplinary Design Optimization Introduction

Typical Aircraft Company Organization
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Multidisciplinary Design Optimization Introduction

MDO Architectures

» MDO focuses on the development of strategies that use numerical analyses
and optimization techniques to enable the automation of the design process

of a multidisciplinary system.

» The big challenge: make such a strategy scalable and practical.

» An MDO architecture is a particular strategy for organizing the analysis
software, optimization software, and optimization subproblem statements to

achieve an optimal design.

» Other terms are used: “method”, “methodology”, “problem formulation™,
“strategy”, “procedure” and “algorithm™.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 8/ 75




Multidisciplinary Design Optimization Introduction

Nomenclature and Mathematical Notation 1

Symbol  Definition

x Vector of design variables

Yt Vector of coupling variable targets (inputs to a discipline analysis)

Y Vector of coupling variable responses (outputs from a discipline analysis)
Y Vector of state variables (variables used inside only one discipline analysi:
f Objective function

c Vector of design constraints

c© Vector of consistency constraints

R Governing equations of a discipline analysis in residual form

N Number of disciplines

n( _ength of given variable vector

m) _ength of given constraint vector

()o Functions or variables that are shared by more than one discipline

() Functions or variables that apply only to discipline ¢

()* -unctions or variables at their optimal value

() Approximation of a given function or vector of functions

(A) Duplicates of certain variable sets distributed to other disciplines

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 9 /75



Multidisciplinary Design Optimization Introduction

Nomenclature and Mathematical Notation 2

>

In MDO, we make the distinction between:

» Local design variables x; — directly affect only one discipline

» Shared design variables xo — directly affect more than one discipline.
. . T
Full vector of design variables z = [z{,21,... 2}

A discipline analysis solves a system of equations that computes the state
variables. Examples?

In many formulations, independent copies of the coupling variables must be
made to allow discipline analyses to run independently and in parallel.

These copies are also known as target variables, which we denote by a
superscript t.

To preserve consistency between the coupling variable inputs and outputs at
the optimal solution, we define consistency constraints

c
C, =Y, — Vi

which we add to the optimization problem formulation.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 10 / 75




Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Detfinition 1

>

Common example used throughout this chapter to illustrate the notation and

MDOQO architectures.

Suppose we want to design the wing of a business jet using low-fidelity
analysis tools.

Model the aerodynamics using a panel method

Model the structure as a single beam using finite elements

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012
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Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Definition 2
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» Aerodynamic inputs: angle-of-attack («), wing twist distribution (~;)
» Aerodynamic outputs: lift (L) and the induced drag (D).

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 12 / 75



Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Definition 3

>

>

Structural inputs: thicknesses of the beam (¢;)

Structural output: beam weight, which is added to a fixed weight to obtain
the total weight (W), and the maximum stresses in each finite-element (o;).

In this example, we want to maximize the range of the aircraft, as given by
the Breguet range equation,

T |
f = Range = %Eln (ijf>

The multidisciplinary analysis consists in the simultaneous solution of the
following equations:

Rl—()i AF—U( Ck) 0
Ro=0= Ku-— ()
Ry =0= L(F)—W:O

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 13 /75




Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Definition 4

» The complete state vector is

Y1 I
y p— y2 p— Uu
Y3 &

» The angle of attack is considered a state variable here, and helps satisfy
L=W.

» The design variables are the the wing sweep (A), structural thicknesses (t)
and twist distribution (7).

CEQ:A

[

» Sweep is a shared variable because changing the sweep has a direct effect on
both the aerodynamic influence matrix and the stiffness matrix.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 14 / 75



Multidisciplinary Design Optimization Introduction

Example: Aerostructural Problem Definition 5

» The other two sets of design variables are local to the structures and
aerodynamics, respectively.

» In later examples, we will see the options we have to optimize the wing in
this example.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 15 /75



Multidisciplinary Design Optimization

Multidisciplinary

Analysis 1

Multidisciplinary Analysis

» To find the coupled state of a multidisciplinary system we need to perform a
multidisciplinary analysis — MDA.

» This is often done by repeating each disciplinary analysis until y; = 4 for all

1S.

Input: Design variables x
Output: Coupling variables, y
0: Initiate MDA iteration loop

repeat
1: Evaluate Ana
2: Evaluate Ana
3: Evaluate Ana

ysis 1 and update y1(y2, y3)
ysis 2 and update ys(y1,y3)
ysis 3 and update y3(y1,y2)

until 4 — 1: MDA has converged

J.R.R.A. Martins

Multidisciplinary Design Optimization

August 2012
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Multidisciplinary Design Optimization

Multidisciplinary Analysis 2

Multidisciplinary Analysis

» The design structure matrix (DSM) was originally developed to visualize the
interconnections between the various components of a system.

Optimization A

Aerodynamics B

Atmosphere
Economics
Emissions
Loads

Noise
Performance
Sizing
Weight
Structures
Mission
Reliability
Propulsion

System

C
D
E
F
G
H
I
J
K
L
M
N
O

A
A
o

B
o
B
o

o
C

J K L M N O

Original ordering

AL H O D

Optimization A @ A
Mission L
Performance o
System
Economics
Reliability
Emissions

Noise

Propulsion

Q =z o= g U o =

Atmosphere
Aerodynamics B

Structures K

Sizing

I
Loads F
Weight J

e - O

o
0]

M
o

e 6 - O

® o
o 0o ® = O
@0 e =0

C B K I F J
| BN BN BN BN J

Improved ordering

» Fixed-point iteration, such as the Gauss—Seidel algorithm above converge
slowly and sometimes do not converge at all.

® - 00
~ o @ o

» One way to improve the disciplines, is to reorder the sequence and possibly
do some inner loops for more coupled clusters.

J.R.R.A. Martins
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Extended Design Structure Matrix
A Unified Description of MDO
Architectures



Optimizer

Motivation

Sret, AR, Ty, Qrigid; Qflexible
Aerostructural &, o, Oeg Flexible flight dynamics
. . . trim and control
® No comprehensive description of

MDO architectures in a unified
notation

Weight, CL, CD

Objective and
Constraints herr,

O—max

e Often not enough detail when a
given MDO architecture is gt i nd Marins 2009
described

1. Multid&ciplinary analysis

® Flow diagrams are not " @ oot sepcs gison
Sta n d a’ rd ized : lqi:i%él . zy X 6. System level optimization
o o ;s IN)Ji;mplme 1 MDA for each discipline
® Flow diagrams do not provide as i

much information as they could el
— lack of information density s

~y

\ 4
»: Discipline

[Martins and Lambe, Consortium Workshop, 2009]



Notation and Problem Statement

x Design var.
minimize fy (:C, y) y? Coupling inputs
R ;o Y Coupling outputs
with respect to x,vy,vy,y 7 State var.
subject to  ¢g (z,y) > 0 f Objective
C Design constraints
C; (5[307 L, yz) >0 c© Consistency cons.
c_ .t . _ R Governing equations
Ci =Yi —Yi =0 ()o  Shared data
R, (xO’ T;, y;;éiv Vi, yz) — 0 ();  Discipline i data
Convention: = = [z, z1,...,23]" andy = [y{,...,yn]’
Convention: ¢;, ¢, and R; exist fore =1,..., N

All architectures solve an equivalent reformulation of this problem



The N’ Diagram and Design Structure Matrix

Optimization A
Aerodynamics B
Atmosphere (
FEconomics D
Emissions E
Loads F
Noise G
Performance H
Sizing I
Weight J
Structures K
Mission L
Reliability M
Propulsion N
System 0O

A

| BN NN BN BN BN BN BN J o >

J K L M N O
® 60606 6 0O

o [n]

Analysis 1 @ @

Analysis 2 @

[Y3] (93]

Analysis 3

O

e Components on main diagonal, coupling data on off-diagonal nodes

e Component inputs in same column, component outputs in same row

® External inputs and outputs may also be included



Extending the DSM syntax:
A Gauss—Seidel Multidisciplinary Analysis Example

Variables
Driver Variable dependency j

Initial input . @/ /xO’le / /xo,a;Q / /5130,5133 /

variable row

/ (no data) (;ﬁ

1 2:
E ] =92, Analysis 2 42

1 I 3
E ] =9 Analysis 3

1

Final output

. Process flow
variable column



A Jacobi Multidisciplinary Analysis Example

@ [xo,21]  [@o,w2] [T, x5 ]

2—1: I
/(no data) { DA )/1 Y3 Us Y1, Y3 Y1, Ys
|

I 1:

E ; : Iyl / Analysis 1
1:

E ; 2 ly2 / Analysis 2
@—/ 2 : /—1 L

- 93 Analysis 3




An Optimization Problem

0, 2%1 T 1 /
Optlmlzatlo ‘ L/ [~ -2

1:
/2 ' f/ Objective

/ 2:c L :
/ Constraints

® Follow sequence of numbers and thin black lines
® When number or index is repeated, procedures can be parallelized

® Close the loops
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Attachment Size

[ diagram_rersestex 437 bytes
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B co.tex 3.07 KB
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Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential
Design vs. MDO 1

» One commonly used approach to design is to perform a sequential
“optimization” approach, which consists in optimizing each discipline in
sequence:

1. For example, we could start by optimizing the aerodynamics,

minimize D (o, ;)
w.r.t. o, y;
st. L(a,v)=W

2. Once the aerodynamic optimization has converged, the twist distribution and

the forces are fixed
3. Then we optimize the structure by minimizing weight subject to stress
constraints at the maneuver condition, i.e.,

minimize W (¢;)

w.r.t. t;

s.t. oy (tz) < Ovyield

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 21 / 75




Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential
Design vs. MDO 2

4. Repeat until this sequence has converged.

(’Yo,to}

0

7—1

1

[’Yj <Optimization> » E

3—2

2

Aerodynamics E

4

T o)
Yy Optimization t
[t S r {t]

6—5

L/D }

5
6

[u] / W,o — oy /; Structures

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 22 /75



Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential
Design vs. MDO 3

» The MDO procedure differs from the sequential approach in that it considers
all variables simultaneously

minimize Range (a,v;, t;)

w.r.t. o, v;,t;

S.t. Ovyield — ( z)
L(a,v) —W

IV

0
0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 23 / 75



Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential

Design vs. MDO 4

0
7
1
6—1

6

/ 6:R,0—0y H Functions
5
1
> @DA > 2:u
4—2
2
E@ Aerodynamics 3—@
3
@ - Structures

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 24 / 75



Multidisciplinary Design Optimization Extended Design Structure Matrix

Example: Aerostructural Optimization — Sequential
Design vs. MDO 5

[Chittick and Martins, SMO, 2008]

0.25 ]‘
{
\
\
\
\
021 3000 3000 : 3000
T
1
\
E 015 \
@ Range (km) |
2 —&— Sequential 000 \ 4000
S — | —e—MDO
= Stress constraint = \H
0.1 — — — Aerodynamic optima

0.05

J.R.R.A. Martins

Jig Twist (degrees)

Multidisciplinary Design Optimization August 2012
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Multidisciplinary Design Optimization Monolithic Architectures

Monolithic Architectures

» Monolithic architectures solve the MDO problem by casting it as single

optimization problem.

» Distributed architectures, on the other hand, decompose the overall problem

Into smaller ones.

» Monolithic architectures include:

» Multidisciplinary Feasible — MDF

» Individual Discipline Feasible — IDF

» Simultaneous Analysis and Design — SAND
>

All-At-Once — AAO

J.R.R.A. Martins

Multidisciplinary Design Optimization

August 2012

26 / 75



Multidisciplinary Design Optimization Monolithic Architectures

Multidisciplinary Feasible (MDF) 1

» The MDF architecture is the most intuitive for engineers.

» The optimization problem formulation is identical to the single discipline
case, except the disciplinary analysis is replace by an MDA

minimize fo (z,y (z,y))
with respect to =«

subject to  ¢g (z,y (z,y)) >0
C; ($0,£Ei,y7; (ZE(),CCZ',yj#Z')) Z 0 for 1= 1, ce ,N.

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 27 / 75



Multidisciplinary Design Optimization

e

0, 7—1:
ptimization

Multidisciplinary Feasible (MDF) 2

2:5130,5131 H32$0,$2H42$0,ZE3

]_, 5_>2 ot t

2:
Analysis 1

/7:f,c

J.R.R.A. Martins

3:
Analysis 2

Multidisciplinary Design Optimization

4:
Analysis 3

Functions




Multidisciplinary Design Optimization Monolithic Architectures

Multidisciplinary Feasible (MDF) 3

» Advantages:

» Optimization problem is as small as it can be for a monolithic architecture

» Always returns a system design that satisfies the consistency constraints, even
if the optimization process is terminated early — good from the practical
engineering point of view

» Disadvantages:

» Intermediate results do not necessarily satisfy the optimization constraints
» Developing the MDA procedure might be time consuming, if not already in

place
» Gradients of the coupled system more challenging to compute (more in later

section)

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 29 / 75




Multidisciplinary Design Optimization Monolithic Architectures

Example: Aerostructural Optimization with MDF

minimize — R

w.rt. At

S.t.  Oyield — az(u) >0

where the aerostructural analysis is as before:

Al —v(u, ) =0
K(t,ANu— F(I)=0
L(T)-W((t)=0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 30 / 75



Multidisciplinary Design Optimization Monolithic Architectures

Individual Discipline Feasible (IDF) 1

The IDF architecture decouples the MDA, adding consistency constraints, and
giving the optimizer control of the coupling variables.

minimize fy (az,y (x,yt))
with respect to .y’
subject to ¢ (w,y (a:,yt)) >0
C; (CE(),(E@,yi (xo,xi,yﬁ-#)) >0 for 2=1,...,N

c§ =yl —y; (a:o,:vi,y;-#) =0 for 2=1,...,N.

» Advantages:

» Optimizer typically converges the multidisciplinary feasibility better than
fixed-point MDA iterations

» Disadvantages:

» Problem is potentially much larger than MDF, depending on the number of
coupling variables
» Gradient computation can be costly

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 31 /75



Multidisciplinary Design Optimization Monolithic Architectures

Individual Discipline Feasible (IDF) 2

» The large problem size can be mitigated to some extent by careful selection
of the disciplinary variable partitions or aggregation of the coupling variables
to reduce information transfer between disciplines.

[ 2yt |

1
0,3—1: '

’ 1 - ; t %/ . t
Optimization)/ wo’: » Yjti 2 iv Yy
1: 5 . //

Analysis ¢ || f 2 '!yZ

2:

3:f,cc” /— ,
/ I, c Functions

2 &

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 32 /75



Multidisciplinary Design Optimization

Example: Aerostructural Optimization Using IDF

minimize — R
t t ¢
w.rt. Ayt 17 o u

S.t.  Oyield — 0; >0

I'‘'—T'=0
ot —a=0
W —u=0

J.R.R.A. Martins Multidisciplinary Design Optimization



Multidisciplinary Design Optimization Monolithic Architectures

Simultaneous Analysis and Design (SAND) 1

» SAND makes no distinction between disciplines, and can also be applied to
single discipline problems.

» The governing equations are constraints at the optimizer level.

minimize fo (z,y)

with respect to x,vy, 9y
subject to  c¢g (x,y) > 0

ci(xo,xi,yi)ZO for ZZl,,N
Ri (xo,zi,y,9;) =0 for ¢=1,..., N.
» Advantages:

» |f implemented well, can be the most efficient architecture
» Disadvantages:

» Intermediate results do not even satisfy the governing equations
» Difficult or impossible to implement for “black-box” components

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 34 / 75



Multidisciplinary Design Optimization Monolithic Architectures

Simultaneous Analysis and Design (SAND) 2

[ 2© y<o> g |

0,2—1: > / //
/:1: XA /(Optlmlzatlon L: iy/ ! 1 L0, i, Y, Ui

1:
/ 2 If ) /_ Functions
p II 1:
/ 2R, //_ Residual 7 ||
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Multidisciplinary Design Optimization Monolithic Architectures

Aerostructural Optimization Using SAND 1

minimize — R

wrt. Ayt D a,u

S.T.  Oyield — O'Z(u) >0
Al = v(u, a)
K(t)u = f(T)
L(T)—-W((t)=0

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 36 / 75



Multidisciplinary Design Optimization Monolithic Architectures

The All-at-Once (AAO) Problem Statement 1

» AAO is not strictly an architecture, as it is not practical to solve a problem of

this form: the consistency constraints are linear and can be eliminated,
leading to SAND.

» Some inconsistency in the name, in the literature

» We present AAO for completeness, and to relate this to the other monolithic
architectures.

N
minimize  fo (z,y) + Y fi (x0, %i, ys)
1=1

with respect to x,yt,y,y
subject to  cg (x,y) > 0

ci (xg,x;,1;) >0 for i=1,...,N
&S =yl —y; =0 for 1=1,...,N
R (azo,xi,y;#i,gi,yi) =0 for +=1,...,N.
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Multidisciplinary Design Optimization Monolithic Architectures

The All-at-Once (AAO) Problem Statement 2

» As we can see, it includes all the constraints that other monolithic
architectures eliminated.

[ 20y y<o> g /

/ZC y O 2_>1 1I$yyth/1:$0,ﬂfi,yi,yt- 7@%%
i Optlmlzatlon ’I ’ J7

- 1:
/ 2 fiCaC /_ Functions
3 II 1:
/Z:Ri//_ Residual i JJ

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012 38 / 75



Multidisciplinary Design Optimization Monolithic Architectures

The All-at-Once (AAO) Problem Statement 3

N
minimize fy (a:, y) + Z fi (3307 L, yz)
i=1

with respect to x,y", vy, ¥

Monolithic

subject to ¢o (z,y) >0 — A AQO M SAND
ci (2o, xi,y;) >0 for i=1,...,N
=yl —y; =0 for i=1,...,N Remove Remove
R; (xg,xi,y§¢i,gi,yi) =0 for ¢=1,....N R.y.9 R.y.9

Remove c¢, i
> MDF

[Martins and Lambe, “MDO:A Survey of Architectures”, AIAA/, 201 3]
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Multidisciplinary Design Optimization Distributed Architectures

Distributed Architectures

Monolithic MDO architectures solve a single optimization problem

Distributed MDO architectures decompose the original problem into multiple
optimization problems

Some problems have a special structure and can be efficiently decomposed,
but that is usually not the case

In reality, the primary motivation for decomposing the MDO problem comes
from the structure of the engineering design environment

Typical industrial practice involves breaking up the design of a large system
and distributing aspects of that design to specific engineering groups.

These groups may be geographically distributed and may only communicate
infrequently.

In addition, these groups typically like to retain control of their own design
procedures and make use of in-house expertise
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Classification of MDO Architectures

N
minimize fo (v,y) + »_ fi (20,7, i)
i=1 Monolithic

with respect to  z,y",y, ¥ Remove c¢, y!
bl

subject to ¢y (z,y) >0 AAO > SAND

¢i (xo, @i, yi) >0 for i=1,...,N
S =yl—y; =0 for i=1,...,N Remove Remove
Ri ($07$i7y§¢i7§/i7%) =0 for ZzlavN ‘7R7y’y "R7y7y

Remove c€,
.

IDF » MDF

Distributed IDF

Multilevel

CO: Copies of the shared variables are created for
each discipline, together with corresponding consistency
constraints. Discipline subproblems minimize difference
between the copies of shared and local variables sub-
ject to local constraints. System subproblem minimizes
objective subject to shared constraints subject to con-
sistency constraints.

Penalty

Distributed MDF

ATC: Copies of the shared variables are used in disci-
pline subproblems together with the corresponding con-
sistency constraints. These consistency constraints are

BLISS-2000: Discipline subproblems minimize

the objective with respect to local variables subject to
local constraints. A surrogate model of the local op-
tima with respect to the shared variables is maintained.
Then, system subproblem minimizes objective with re-
spect to shared design and coupling variables subject to
shared design and consistency constraints, considering
the disciplinary preferences.

relaxed using a penalty function. System and discipline
subproblems solve their respective relaxed problem in-
dependently. Penalty weights are increased until the
desired consistency is achieved.

CSSO: m system subproblem, disciplinary anal-
yses are replaced by surrogate models. Discipline
subproblems are solved using surrogates for the other
disciplines, and the solutions from these discipline
subproblems are used to update the surrogate mod-
els.

IPD / EPD: Applicable to MDO problems with no
shared objectives or constraints. Like ATC, copies of
shared variables are used for every discipline subprob-
lem and the consistency constraints are relaxed with a

QSD Each discipline is assigned a “budget” for a lo-
cal objective and the discipline problems maximize the
margin in their local constraints and the budgeted ob-
jective. System subproblem minimizes a shared objec-
tive and the budgets of each discipline subject to shared
design constraints and positivity of the margin in each
discipline.

penalty function. Unlike ATC, the simple structure of
the disciplinary subproblems is exploited to compute
post-optimality sensitivities to guide the system sub-
problem.

BLISS: Coupled derivatives of the multidisci-
plinary analysis are used to construct linear subprob-
lems for each discipline with respect to local design
variables. Post-optimality derivatives from the so-
lutions of these subproblems are computed to form
the system linear subproblem, which is solved with
respect to shared design variables.

ECO: As in CO, copies of the shared design vari-
ables are used. Disciplinary subproblems minimize
quadratic approximations of the objective subject to lo-

cal constraints and linear models of nonlocal constraints.
Shared variables are determined by the system subprob-
lem, which minimizes the total violation of all consis-
tency constraints.

MDOIS: Applicable to MDO problems with no
shared objectives, constraints, or design variables.
Discipline subproblems are solved independently as-
suming fixed coupling variables, and then a multi-
disciplinary analysis is performed to update the cou-

pling.

J.R.R.A. Martins

[Martins and Lambe, “MDO:A Survey of Architectures”, AIAA/, 201 3]

Multidisciplinary Design Optimization

ASO: System subproblem is like that of MDF, but
some disciplines solve a discipline optimization sub-
problem within the multidisciplinary analysis with
respect to local variables subject to local constraints.
Coupled post-optimality derivatives from the disci-
pline subproblems are computed to guide the system
subproblem.
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Multidisciplinary Design Optimization Distributed Architectures

Concurrent Subspace Optimization (CSSO) 1
The CSSO system subproblem is given by

minimize fO (xag(xag))
with respect to «

subject to ¢o (z,y (x,7)) >0

C; (2170,332',:(]@' (il?o,xi,?jj;,gi)) > Ofor 2= 1, c e

and the discipline ¢ subproblem is given by

minimize  fo (2, Y (Ti, Ujsti) » Uji)
with respect to xg, x;

subject to ¢o (z,y (x,7)) >0
&) (anxiayi (%»%»@j;ﬁi)) >0

, N

Cj(angj(x()?g))ZO for ]ZlvaN]%Z

J.R.R.A. Martins Multidisciplinary Design Optimization
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Multidisciplinary Design Optimization

Concurrent Subspace Optimization (CSSO) 2
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1,6-2: : —_— —
Initial DOE 2:y 5: wo, a; ) 3: w0, x; []

13,18—14:
Discipline
DOE

2,4—3,14,16—15:

3,15yt ;/
T - _
19,24—20
= TYE, System : ] :

Optimization

7,12—8: »
Op

timization ¢

8,10—9: ) 77 9- y;?# 7

Local MDA 1

=]
Jl

5,9,17,21:
Analysis @
Metamodel

10y Joee 50T i Jomt (05

J.R.R.A. Martins Multidisciplinary Design Optimization



Multidisciplinary Design Optimization Distributed Architectures

CSSO Algorithm

Input: Initial design variables x
Output: Optimal variables z*, objective function f*, and constraint values c¢*
0: Initiate main CSSO iteration
repeat
1: Initiate a design of experiments (DOE) to generate design points
for Each DOE point do
2: Initiate an MDA that uses exact disciplinary information
repeat
3: Evaluate discipline analyses
4: Update coupling variables y
until 4 — 3: MDA has converged
5: Update the disciplinary surrogate models with the latest design
end for 6 — 2
7: Initiate independent disciplinary optimizations (in parallel)
for Each discipline ¢ do
repeat
8: Initiate an MDA with exact coupling variables for discipline i and
approximate coupling variables for the other disciplines
repeat
9: Evaluate discipline 7 outputs ¥;, and surrogate models for the
other disciplines, 7;;
until 10 — 9: MDA has converged
11: Compute objective fy and constraint functions ¢ using current

data
until 12 — 8: Disciplinary optimization i has converged
end for
13: Initiate a DOE that uses the subproblem solutions as sample points
for Each subproblem solution 7 do
14: Initiate an MDA that uses exact disciplinary information
repeat
15: Evaluate discipline analyses.
until 16 — 15 MDA has converged
17: Update the disciplinary surrogate models with the newest design
end for 18 — 14
19: Initiate system-level optimization
repeat
20: Initiate an MDA that uses only surrogate model information
repeat
21: Evaluate disciplinary surrogate models
until 22 — 21: MDA has converged
23: Compute objective fy, and constraint function values ¢
until 24 — 20: System level problem has converged
until 25 — 1: CSSO has converged
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Multidisciplinary Design Optimization Distributed Architectures

Collaborative Optimization (CO) 1
The CO5 system subproblem is given by:

minimize fy (xo,zﬁl,---,@Nayt)
with respect to  xg,%1,..., 2N, Y’
subject to ¢ (zo, &1,...,2ZN,y") >0
I = ||Z0i — @oll3 + |8 — 4] 3+

Hyf—yi(iﬁomfm,yﬁ;&i) @:0 for i =1,...,N

where Zo; are duplicates of the global design variables passed to (and manipulated

by) discipline ¢ and Z; are duplicates of the local design variables passed to the
system subproblem.

The discipline ¢z subproblem in both CO; and CO5 is

Ce . A - t
minimize J; (33()117337373/73 (3307;,33z'>yj;éi))
with respect to Zg;, x;

subject to  ¢; (5?30@, Liy Yi (Z%Oi,%;,y;;éz‘)) > 0.
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Multidisciplinary Design Optimization Distributed Architectures

Collaborative Optimization (CO)

0) ~(0 ~(0 0
[ 800 [0 ]

0, 2—>1 p p
System 1:z0,%1...5, Y 11 :yh /H 1.2 : g, &, y* //
Optlmlzatlon I
1:
/ 2: f(), Co /—1 System
Functions

1.0, 1.3—1.1: — — //

Optimization 7 1.1: Zoi, T /A 1.2 2oy, 4
1.1: — //

Analysis 1 1.2

. 1.2:
1.3: fi,ci, J; //_ Discipline 7

Functions
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Multidisciplinary Design Optimization Distributed Architectures

CO Algorithm 1

Input: Initial design variables x

Output: Optimal variables x*, objective function f*, and constraint values c*

0: Initiate system optimization iteration
repeat
1: Compute system subproblem objectives and constraints
for Each discipline 7 (in parallel) do
1.0: Initiate disciplinary subproblem optimization
repeat
1.1: Evaluate disciplinary analysis
1.2: Compute disciplinary subproblem objective and constraints
1.3: Compute new disciplinary subproblem design point and J;
until 1.3 — 1.1: Optimization ¢ has converged
end for
2: Compute a new system subproblem design point
until 2 — 1: System optimization has converged

J.R.R.A. Martins Multidisciplinary Design Optimization August 2012
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Multidisciplinary Design Optimization Distributed Architectures

Aerostructural Optimization Using CO 1

System-level problem:

minimize — R
wrt. AL TE of ot W
s.t. Jf <107°
Jy <107°

Aerodynamics subproblem:

e - (1) S (- (8 (1)

w.rt. A v, «
st. L—W =0
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Multidisciplinary Design Optimization Distributed Architectures

Aerostructural Optimization Using CO 2

Structures subproblem:

AN w; \ 2
minimize Jy = (1 — E) + Z (1 — u_j;)
w.rt. At

S.t.  Oyield — 0; > ()
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Multidisciplinary Design Optimization Distributed Architectures

Bilevel Integrated System Synthesis (BLISS) 1

The system level subproblem is formulated as

d *
minimize (f)o ( dfo ) Az
L0
with respect to Az
subject to  (cj)o + ( C_'CO> Axg >0
aAX

] ¥
dc;

(c,f)o—l—(_' )Aazozo for i=1,...

AXo
Azor, < Azg < Azgy.

J.R.R.A. Martins Multidisciplinary Design Optimization
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Multidisciplinary Design Optimization Distributed Architectures

Bilevel Integrated System Synthesis (BLISS) 2
The discipline 7 subproblem is given by

minimize (fo)o + <df0) Ax;

with respect to Aux;

d
subject to  (cg)o + ( CO) Ax; >0

Az, < Ax; < Az,

Note the extra set of constraints in both system and discipline subproblems
denoting the design variables bounds.
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Bilevel Integrated System Synthesis (BLISS) 3
o] o] [ []
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Multidisciplinary Design Optimization Distributed Architectures

BLISS Algorithm

Input: Initial design variables x
Output: Optimal variables x*, objective function f*, and constraint values c*
0: Initiate system optimization
repeat
1: Initiate MDA
repeat
2: Evaluate discipline analyses
3: Update coupling variables
until 3 — 2: MDA has converged
4: Initiate parallel discipline optimizations
for Each discipline ¢ do
5: Evaluate discipline analysis
6: Compute objective and constraint function values and derivatives with
respect to local design variables
7. Compute the optimal solutions for the disciplinary subproblem
end for
8: Initiate system optimization
9: Compute objective and constraint function values and derivatives with
respect to shared design variables using post-optimality analysis
10: Compute optimal solution to system subproblem
until 11 — 1: System optimization has converged

J.R.R.A. Martins Multidisciplinary Design Optimization

August 2012

54 / 75



Multidisciplinary Design Optimization Distributed Architectures

Analytical Target Cascading (ATC) 1
The ATC system subproblem is given by

N
minimize fy (:I:,yt) + Z OF (530z‘ — xoayf —Yi (wO,fEivyt)) +
1

1=
t
®g (co (z,9"))
with respect to g, y’,
where ® is a penalty relaxation of the global design constraints and ®; is a

penalty relaxation of the discipline i consistency constraints. The it discipline
subproblem is:

minimize  fo (Zo;, T4, Vi (fJOi,wi,y;;éi) 7y;';éi) + fi (Zoi, i, yi (ioi,azi,y;#)) -
P, (yf — Y (S%Oz', Ly s ZU;;A@) , Tog — $O) +
D (co (Z0i> Tis Yi (Lois Tir Yjzi) > Yiti))

with respect to 2¢;, x;

subject to  ¢; (aAjOia Liy Yi (Sfiouivi,y;';éi)) > 0.
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Analytical Target Cascading (ATC) 2
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Multidisciplinary Design Optimization Distributed Architectures

ATC Algorithm

Input: Initial design variables x
Output: Optimal variables *, objective function f*, and constraint values c*
0: Initiate main ATC iteration
repeat
for Each discipline ¢ do
1: Initiate discipline optimizer
repeat
2: Evaluate disciplinary analysis
3: Compute discipline objective and constraint functions and penalty
function values
4. Update discipline design variables
until 4 — 2: Discipline optimization has converged
end for
5: Initiate system optimizer
repeat
6: Compute system objective, constraints, and all penalty functions
7. Update system design variables and coupling targets.
until 7 — 6: System optimization has converged
8: Update penalty weights
until 8 — 1: Penalty weights are large enough
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Asymmetric Subspace Optimization (ASO) 1
The system subproblem in ASO is

minimize fo (z,y (z,y)) + Z fr (o, Tk, Yk (To, Tk, Yj£k))
k

with respect to xg, %

subject to  ¢g (z,y (z,y)) >0
Ck (an Lky Yk (3707561673/]#]{)) > 0 for all k)

where subscript k£ denotes disciplinary information that remains outside of the
MDA. The disciplinary problem for discipline 7, which is resolved inside the MDA,
IS

minimize  fo (z,y (x,y)) + fi (%0, Zi, yi (To, Ti, Yj£i))
with respect to x;

subject to  ¢; (7o, T4, ¥i (To, T4, Yji)) > 0.
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Asymmetric Subspace Optimization (ASO) 2
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Multidisciplinary Design Optimization Distributed Architectures

ASO Algorithm

Input: Initial design variables x
Output: Optimal variables *, objective function f*, and constraint values c*
0: Initiate system optimization
repeat
1: Initiate MDA
repeat
2: Evaluate Analysis 1
3: Evaluate Analysis 2
4: Initiate optimization of Discipline 3
repeat
5: Evaluate Analysis 3
6: Compute discipline 3 objectives and constraints
7. Update local design variables
until 7 — 5: Discipline 3 optimization has converged
8: Update coupling variables
until 8 — 2 MDA has converged
9: Compute objective and constraint function values for all disciplines 1 and

10: Update design variables
until 10 — 1: System optimization has converged
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Classification of MDO Architectures

N
minimize fo (v,y) + »_ fi (20,7, i)
i=1 Monolithic

with respect to  z,y",y, ¥ Remove c¢, y!
bl

subject to ¢y (z,y) >0 AAO > SAND

¢i (xo, @i, yi) >0 for i=1,...,N
S =yl—y; =0 for i=1,...,N Remove Remove
Ri ($07$i7y§¢i7§/i7%) =0 for ZzlavN ‘7R7y’y "R7y7y

Remove c€,
.

IDF » MDF

Distributed IDF

Multilevel

CO: Copies of the shared variables are created for
each discipline, together with corresponding consistency
constraints. Discipline subproblems minimize difference
between the copies of shared and local variables sub-
ject to local constraints. System subproblem minimizes
objective subject to shared constraints subject to con-
sistency constraints.

Penalty

Distributed MDF

ATC: Copies of the shared variables are used in disci-
pline subproblems together with the corresponding con-
sistency constraints. These consistency constraints are

BLISS-2000: Discipline subproblems minimize

the objective with respect to local variables subject to
local constraints. A surrogate model of the local op-
tima with respect to the shared variables is maintained.
Then, system subproblem minimizes objective with re-
spect to shared design and coupling variables subject to
shared design and consistency constraints, considering
the disciplinary preferences.

relaxed using a penalty function. System and discipline
subproblems solve their respective relaxed problem in-
dependently. Penalty weights are increased until the
desired consistency is achieved.

CSSO: m system subproblem, disciplinary anal-
yses are replaced by surrogate models. Discipline
subproblems are solved using surrogates for the other
disciplines, and the solutions from these discipline
subproblems are used to update the surrogate mod-
els.

IPD / EPD: Applicable to MDO problems with no
shared objectives or constraints. Like ATC, copies of
shared variables are used for every discipline subprob-
lem and the consistency constraints are relaxed with a

QSD Each discipline is assigned a “budget” for a lo-
cal objective and the discipline problems maximize the
margin in their local constraints and the budgeted ob-
jective. System subproblem minimizes a shared objec-
tive and the budgets of each discipline subject to shared
design constraints and positivity of the margin in each
discipline.

penalty function. Unlike ATC, the simple structure of
the disciplinary subproblems is exploited to compute
post-optimality sensitivities to guide the system sub-
problem.

BLISS: Coupled derivatives of the multidisci-
plinary analysis are used to construct linear subprob-
lems for each discipline with respect to local design
variables. Post-optimality derivatives from the so-
lutions of these subproblems are computed to form
the system linear subproblem, which is solved with
respect to shared design variables.

ECO: As in CO, copies of the shared design vari-
ables are used. Disciplinary subproblems minimize
quadratic approximations of the objective subject to lo-

cal constraints and linear models of nonlocal constraints.
Shared variables are determined by the system subprob-
lem, which minimizes the total violation of all consis-
tency constraints.

MDOIS: Applicable to MDO problems with no
shared objectives, constraints, or design variables.
Discipline subproblems are solved independently as-
suming fixed coupling variables, and then a multi-
disciplinary analysis is performed to update the cou-

pling.

J.R.R.A. Martins

[Martins and Lambe, “MDO: A Survey of Architectures”, AIAAJ,201 3]

Multidisciplinary Design Optimization

ASO: System subproblem is like that of MDF, but
some disciplines solve a discipline optimization sub-
problem within the multidisciplinary analysis with
respect to local variables subject to local constraints.
Coupled post-optimality derivatives from the disci-
pline subproblems are computed to guide the system
subproblem.
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Multidisciplinary Design Optimization Distributed Architectures

Example: A Framework for Automatic Implementation of
MDO 2

1N —
A\
MDF SAND IDF (010 CSSO

1

55 10 O
0.* 1

RS

Optimization Optimizer

[Martins et al., ACM TOMS, 2009]
[ Tedford and Martins, Optimization and Engineering, 2010]
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Computing derivatives:
review and unification

[Martins and Hwang, AlIAA/,2013]


http://mdolab.engin.umich.edu/content/review-and-unification-discrete-methods-computing-derivatives-single-and-multi-disciplinary

What'’s in 2 hame?

¢ Sensitivity analysis: Includes much more than derivatives of
functions and numerical models

® Sensitivity derivative: Somewhat redundant!
¢ Design sensitivities: Acceptable term
* Derivative: Matches the scope of this talk most closely

e Gradient/Jacobian: This vector/matrix of derivatives is what

we need for optimization . _
d f1 d f1
| dx, dz,,
dax ' .
® First order derivatives dfnf C-fnf
L . dx dx
e Deterministic numerical models L 1 Ny -
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Applications of Derivatives

® Numerical optimization

» For gradient-based optimization, need the gradient of the
objective and constraints to iterate and satisfy the KKT
optimality conditions

» Only viable option for problems with large numbers of design
variables

e Construction of linear approximations
e Gradient-enhanced surrogate models
®* Newton-type methods

® Functional analysis

® Parameter estimation

e Aircraft stability derivatives
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Computational Cost vs. Number of Variables
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[Kenway, Kennedy and Martins, AIAA Journal, 201 3]
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Objectives

® Review all methods for computing derivatives of

multidisciplinary systems

e Unify the theory behind these methods

e Create opportunities for new insights
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Methods for Computing Derivatives

e Finite differences

e Complex step

¢ Symbolic differentiation

e Automatic differentiation: forward and reverse

® Analytic methods: direct and adjoint

e Coupled derivatives of multidisciplinary systems

Black box

Solver

Finite-
difference

Classification
Complex- Differentiation of methods Level of
step methods for computing decomposition
derivatives

Discipline

Symbolic

Line of code




Black Box Methods




Finite Differences

df h2d2f
r+eh)=f(x)+h | —
f( J ) f( ) dZL‘] | 2 C.ZC? |
df  f(x+ejh)— f(x) o)
- I
dx, h
® Want to decrease truncation error by 1 dfi
decreasing the step, but... dx,
df || .
e Subtractive cancellation becomes worse as  Jp :
step decreases dfn,
| dx,

* Require 71, evaluations of f

dfi T
dx

dfnf
dx

N X Ny
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Finite Differences

flx+h) +1.234567890123431

f(x) +1.234567890123456
A f —(0.000000000000025
f(x+ejh) = f( )+hdf+h2d2f+ =
e = dz; 2 daz?
g _ f(w+e]Z)_f(w) —|—O(h)
d f(x)

f(x+h)

Finite difference approximation



Complex Step

df h? d2f ih3 d3f
he;) = h -
Jla+i 67) fla) +i dxj 2 dx? 0 da:‘?
ﬂ _ Im [f(x + ihej)] ! (’)(hQ)
da;j h
® No subtractive
cancellation x+eih

® Precision of derivative
matches that of f

® Flexible implementation

f = Jfreal ‘|‘ifimag

[Martins, et al., ACM TOMS, 2003]
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Complex Step: Another Derivation

» Consider a function, f = u + v, of the complex variable, z =z 4+ 1y. If f is
analytic the Cauchy—Riemann equations apply, i.e.,

ou _ o
or Oy
ou_ o
oy Oz

» We can use the definition of a derivative in the right hand side of the first
Cauchy—Riemann to get

ou . v(z+ily+h)) — oz +iy)
— = lim
aCE h—0 h

where h 1s a small real number.

[Martins, et al., ACM TOMS, 2003]
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Complex Step: Another Derivation

» Since the functions are real functions of a real variable, y = 0, u(z) = f(z)
and v(z) = 0 and we can write,

of . Im[f(z+ih)
ox N h—0 h .

» For a small discrete h, this can be approximated by,

of _ Im[f (z +ih)]
or h '

[Martins, et al., ACM TOMS, 2003]
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Complex Step: Another Derivation

lm

[ (x,h)

[ (z,0)

OF Im|F(x+ih)] —Im|F(x)]
Ox Im|zh)

2

N 8_F N Im|F'(x 4 th)]
or h

[Martins, et al., ACM TOMS, 2003]



Example: The Complex-Step Method Applied to a Simple
Function 2

O Complex-step
A Forward-difference
100 ra\ o Central-difference

w

S 107 F A
=

L

e}

0}

N

£

S 10™L. U UUUUUTE TORURRR T
< | | 5

10 F N o

Relative error of the derivative vs. decreasing step size

[Martins, et al., ACM TOMS, 2003]
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Thinking Inside the Box
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Algorithm,Variables, and Functions

Consider the sequence of all the variables and functions in an algorithm

2]7;:‘/7;@}1,?]2,...,?]7;_1), izl,...,n

\

variable \ function

Assume a given variable depends only on previous one: all loops must be
unrolled

The partial derivative of any of these functions wrt to any other variable is
a‘/; o ‘/;l(vlwﬂvvj—hvj_I_havj—l—lw“avi—l)_V;J(')
v ; h

J




90

Residual Functions and State Variables

Computational model can be represented as a set of residuals of the
governing equations:

r = R}w, Y‘(\az)) = ()

state variables

/’

residuals . .
independent variables

The function of interest is:




One Chain to Rule Them All

= |v1,..., 0,

C = [Ci(v),....C,(v)]".

where the variables are uniquely defined by constraints Cz (’U)

Consider a set of variables

and a set of functions

Linearizing these functions:

Ac =

(¥

0C

Ov

Av,

After some manipulations, this yields the chain rule

]T

0C dv
ov de

=1

B oC "' dv?!

~ Ov

de

91
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Chain Rule in Matrix Form

— Variables and Constraints

-

1 { V1 { V1 { V1 -
1
V2
[v2 Cs { V2 f v2 v=|
2
C! _ -
@ @ 3 @ C’l(vl,...,’un)
02(01, c ey ’Un)
C(v) =
| Cn (v, .., Un)
[v5 ] { Vs J { Vs J Cn
— Derivation
{86’} [dv} _r— 'GC}T {dfv]T
ov de| =~ | ow dc
B 801 801 7 (dvl d’U1\' B 801 8Cn 7 'ﬁ’l)l d’l)n\'
ov, ov,, dc, de,, ov, Ov, dcg ‘ dc,
: : ; =I = ST ;
aC, 9C, dv,  don oC,  aC, dvi  don
| Ov,  Ow,, _ (dey de,, | Ov,,  Owv,, _(de,, ' de,, .
Forward form Reverse form
n 801 d’l)k n dvi 8Ck
> Sig = 3i;
avk de

k=1

Z de, 8vj
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Chain Rule in Matrix Form

— Variables and Constraints

-

1 { V1 { V1 { V1 -
1
V2
[v2 Cs { V2 f v2 v=|
2
C! _ -
@ @ 3 @ C’l(vl,...,’un)
02(01, c ey ’Un)
C(v) =
| Cn (v, .., Un)
[v5 ] { Vs J { Vs J Cn
— Derivation
{86’} [dv} _r— 'GC}T {dfv]T
ov de| =~ | ow dc
B 801 801 7 (dvl d’U1\' B 801 8Cn 7 'ﬁ’l)l d’l)n\'
ov, ov,, dc, de,, ov, Ov, dcg ‘ dc,
: : ; =I = ST ;
aC, 9C, dv,  don oC,  aC, dvi  don
| Ov,  Ow,, _ (dey de,, | Ov,,  Owv,, _(de,, ' de,, .
Forward form Reverse form
n 801 d’l)k n dvi 8Ck
> Sig = 3i;
avk de

k=1

Z de, 8vj
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Monolithic Differentiation

— Variables and Constraints

<
x —a° @ V = _‘i;:|
i .0
f-F Clo)=| ;7 Fﬁw)]

_ Y
— Derivation N
oC dv 7 F0C 1T [dv] T

%) 5] =1= %] &)
C (e — x?) O(x — x°) ] dz dx ] (e —x20)" o(f —F)T] [ deT dfT]
Ox oFf de df | _7_ Ox Ox de _ dx
oOf —F) o(f — F) df df o(x—a*) o(f —F)T || d=’ df7T
| o= of l Lde df | | of of 1L df df
I 0 o] L _OFT) [ [dfT
_8_FI ﬂI =I = - dx dz
Ox de) |0 I o I
_ Y

df OF df OF

Monolithic differentiation (from forward form) Monolithic differentiation (from reverse form)
( de =~ oz } ( de ~ oz ]
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Monolithic Differentiation

— Variables and Constraints

<
x —a° @ V = _‘i;:|
i .0
f-F Clo)=| ;7 Fﬁw)]

_ Y
— Derivation N
oC dv 7 F0C 1T [dv] T

%) 5] =1= %] &)
C (e — x?) O(x — x°) ] dz dx ] (e —x20)" o(f —F)T] [ deT dfT]
Ox oFf de df | _7_ Ox Ox de _ dx
oOf —F) o(f — F) df df o(x—a*) o(f —F)T || d=’ df7T
| o= of l Lde df | | of of 1L df df
I 0 o] L _OFT) [ [dfT
_8_FI ﬂI =I = - dx dz
Ox de) |0 I o I
_ Y

df OF df OF

Monolithic differentiation (from forward form) Monolithic differentiation (from reverse form)
( de =~ oz } ( de ~ oz ]




Algorithmic Differentiation

~— Variables and Constraints

b~ T e T e 7 ] ]
-4
to
s~ Ty el -+ e ] o= |
| th
tq — T _
3 3 @ t1 —T1(0)
to — Ta(t1)
C(v) =
| th — Tn(tl; SR 7tn—1)
t, — 1,
\\§
~— Derivation
'8C}T [dv]T
| Ov de
1 0 ... 0] [ 0% Ty, T
o1, | ot, ot,
8751 0o 1
: . . 0 _ oT,
oTh, OTn ot, .
| oty O, 0 o 1
.
Forward mode AD Reverse mode AD
1—1 7
dt; oT; dtyg, dt; dt; 0T}
= 5, —r — 5, _Fr
dt 3+kz_:, ot, dt, dt it 2. dt, ot,
=3 J J J
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AD Example

X1

9 FUNCTION F(x)

n REAL :: x(2), det, y(2), £(2)
det = 2 + x(1)*x(2) *%2

Y2 y(1) = x(2)**2xSIN(x(1))/det

Ry(21, 22, Y1, Y2) = T1y1 + 2y2 — sinx, y(2) = SIN(x(1))/det

RQ(CE IvalayQ):_yl_l_:EZyQ f(1) = y(1)

Fy (21, 29, U1, Ua) = £(2) = y(2)*SIN(x(1))
RETURN

Fo(21, 22,91, 92) = Smml END FUNCTION F
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FUNCTION F(x)

REAL :: x(2), det, y(2), £(2)
Forward AD AL (), e Y
y(1) = x(2)**x2*xSIN(x (1)) /det

y(2) = SIN(x(1))/det

FUNCTION F_D(x, xd, f) f(1) = y(1)

REAL :: x(2), xd(2) f(2) = y(2)*SIN(x(1))
REAL :: det, detd RETURN

REAL :: y(2), yd(2) END FUNCTION F

REAL :: f£(2), f_d(2)

detd = xd(1)*x(2)**2 + x(1)*2*xx(2)*xd(2)
det = 2 + x(1)*x(2) *%2
yd = 0.0
yd (1) = ((2*x(2)*xd(2)*SIN(x(1))+x(2) **2xxd (1) *C0S(x (1)) ) *det-
X (2) **x2%&
& SIN(x(1))*detd)/det **2
y(1) = x(2)**2xSIN(x (1)) /det
yd (2) = (xd(1)*C0S(x(1))*det-SIN(x(1))*detd)/det**2
y(2) = SIN(x(1))/det

f d = 0.0
f_d(1) = yd(1)
f(1) = y(1)

f_d(2) = yd(2)*SIN(x(1)) + y(2)*xd(1)*C0OS(x(1))
f(2) = y(2)*SIN(x(1))
RETURN

END FUNCTION F_D



FUNCTION F(x)

Reverse AD e

x(2), det, y(2), £(2)
2 + x(1)*x(2) *%2

y(1) = x(2)**x2*xSIN(x (1)) /det
y(2) = SIN(x(1))/det
STIMOUTINE E b, b BB £ =y ()
REAL §(2): ?b(2)’ £(2) = y(2)*SIN(X(1))
REAL :: £(2), fb(2) RETURN
REAL :: det, detb, tempb, temp END FUNCTION F

det = 2 + x(1)*x(2) *%x2

y(1) = x(2)**x2*xSIN(x(1))/det

y(2) = SIN(x(1))/det

xb = 0.0

yb = 0.0

yb(2) = yb(2) + SIN(x(1))*£fb(2)
xb(1) = xb(1) + y(2)*C0S(x(1))*£fb(2)
fb(2) = 0.0

yb(1) = yb(1) + £fb(1)

xb(1) = xb(1) + COS(x(1))*xyb(2)/det
detb = -(SIN(x(1))*yb(2)/det*x2)
yb(2) = 0.0

tempb = SIN(x(1))*yb(1l)/det

temp = x(2)**2/det

xb (2) xb(2) + 2*x(2)*xtempb

detb = detb - temp*tempb

xb (1)

xb (2) xb(2) + x(1)*2*x(2)*dethb
END SUBROUTINE F_B

xb (1) + x(2)**2*xdetb + temp*COS(x(1))*yb (1)
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AD Example: Forward and Reverse

1 0 0 0 0 00
0 1 0 0 0 00
—1 —2 I 0 0 00
—0.18 —0.561 0.093 1 0 00
—0.18 0 0.093 0 I 00
0 0 o -1 0 10
—0.152 0 0 0 —0.84101

10 -1 —0.18 —0.18 0 —0.152"
01-2-0561 0 0 0
00 1 0.093 0093 0 0
00 0 1 0 —1 0
00 0 0 10 —0.841
000 0 0 1 0
000 0 0 0 1

'
0.

0.224 —0.157.

—0.093 —0.079

1 0

0 1

1 2
0.087 0.374
0.087 —0.187
0.087 0.374

087 0.224
374 —0.157

0
0.341
0
1

O = O =

01
00
00
00
00

00
00
00
00

00
10

10

00

_O 1_

1 0C



Analytic Methods

~— Variables and Constraints

z — ¥ |— ] [z ]

"R _
r [:7 2 — 0
C(v) = | r— R(z,y)
f—F _.f — F(Q},’y)
N
~— Derivation
[ac] [dv] L 'ac]T [dvr
ov de| =~ | owv dec
CO(x — x°) O(x — x°) O(x — x) ] rde dae dx 1 [ 9(x — 2" 9(r—-R)T o(f - F)T | [ daT dy? df7T -
ox oy of dz dr df ox ox Ox de  dx  d«
O(r—R) 9(r—R) 0(r—R) | | dydydy | . _ dx—a”)" a(r—-R)T o(f - F)T || daT dyT dfT
ox o0y of dx dr df oy o0y oy dr . dr . dr
O(f-—F) o(f=F) o(f = F) || df df df d(x—x°)T a(r - R)T o(f — F)T | | de® dy" df”
| o= oy of 1 Ldex dr df I af aof of | tdf df df -
7 0O O] (7)o 0] -I ORT OFT] ’IdyT @_
OR OR dy|dy Cox.. O de_|dx
T oz oy 3—§—r° =I= |, ORT OFT|| 'dyT|df"
_OF oF _:?_JtI oy oy dr |dr
ox Oy Ldx)dr A |0 O I |[LO o (I )]
N
~— Direct method ~ — Adjoint method
OR dy . OR ORT dfT OFT
oy dz 0w 3y dar ~ oy

df OF OF dy

de o= Oy dx

df OF df9R

d=x

ox +-d'r ox
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Analytic Methods: Direct vs. Adjoint

From forward chain rule

Solution

From reverse chain rule

1 0 o]r T ORT OFTr dfT'
_OR_OR 11 dy I df OF OF[OR] '0R dz . dz || dz 0
S C 3 dz 8z £ _OR"_OF dr™ =0
_OF _oF || df 0 y dy Oy dr I
| Ox Oy | L d=x- |0 O r |L I .
N | | D_D N | | | | ]
L L L] e < g L
] e s N — 1]
i Ng > Nf L L L]
-] N ] ] - N N N
Direct method Adjoint method
df OF OF dy ORdy OR df OF dfoR 8RTdfT_ OFT
de Oz Oy dax Oy dx Oox de Oz dr Oz dy dr Oy
=0 - _ e <n, 070 - _
l | = | I_I_l l | = | l_|_l
— — Ng > Ny — —

[Martins and Hwang, AIAA/,2013]
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http://mdolab.engin.umich.edu/content/review-and-unification-discrete-methods-computing-derivatives-single-and-multi-disciplinary

Coupled Analytic Methods: Residual Form

~N

3

~— Variables and Constraints
z —a’ [z ] [z ] [x] [ = ]
Y1
v =
m- R {1} v/ 1
YN
L
[ xz — x° i
T1 _Rl(wayla"'ayN)
N — Ry Yy | C(v) = :
rN — Ry (2, Y1, .., YN)
f—-F f—F(z,y1,...,yn)
N\ J
~— Derivation N
|:8C} [d'v} _I— [GC’]T {dv}T
ov c| = | ov de
[T O ... 0 O][(Ir Yo ... 0 O] ‘I_aRlT _8RNT _8FT"Idy1T dynT gT T
_OR; OR, _OR, o |14y |dys dv: ox . ox . Oz de =~ de | dz
ox 0y, oY N de |dr, '”drN _8R1 _aRN _8F 0 dy1 dyn ﬁ
: . : : : . g 0y, 0y, 0y, dr, dr, dr,
ORN ORN 6RN6 dyn [dyn .d’!)N(') L
Y ayl ayN da d'rl d'rN O_3R1T _GRNT_aFT Odle d’yNT dfT
_OF 9F __'_8_FI af |df df I N N N dry dry |dry
| ox 0y, Oy, JLdz dr, dr 0 0 0 I Lo o 0 0 I )
N\
— Coupled direct: residual form ~— Coupled adjoint: residual form N
'aRl.HaRl' dys OR, _8R1T”.8RNT' —ﬁT_ m OF T
0y, XTI de O 0y, 0y, dr, 0y,
RNy ORn || dyn ORN R, T  ORNT df T OF T
_3y1'“8yN_ dx ox | dyy ”'ayN 1L dry oY
dyl 8R1 7]
df OF [8F 8F} dae df OF df  df O
de oz oy, Oy ) de oz [dr'“dr } )
1 N dyN 1 N 8RN
dx Oox -
J N\




— Variables and Constraints

~N

Coupled Analytic Methods: Functional Form

x -z’ = [z ] = [ = ]
Y1
v =
v -Yi { Y1 { v/ ;
YN
L f
i x — x° T
yl_Yl(mayQa"'ayN)
[yn f yn — Yy s Y | C(v) = :
yN_YN(ma'yla"'vyN—l)
f_F f_F(wyyla"'ayN) i
o
~— Derivation
[86’] [dv} - GC]T {d'v]T
ov de!| = | dv de
T T 0 0 O[T YO ... 0 0O oY: T oYnT OFT [ _dy:T  dynT(dfT)]
oY: oY1 dy: dy: - ox B T _5 I de ~ da E
— — 0 — | I . 0 oYnT OFT dynT| df T
ox oY da dy T _ _ o I )
. . . / 9y, 9y, dy, |dy,
OYn OYn r ollldgx|dyn ' I o : : : Lo T :
ox Oy, de |dy, ot I _OF7 Odle... I ar’
_OF _8_F' _8_FI af |d df I oYy YN dyy dyy
ox 0y, Oy JL\dz dy, dy 0 0 0 I L0 O 0 0 I )]
g
— Coupled direct: functional form — Coupled adjoint: functional form
- T r T - - T 7
o L 9N rdu dY: I _ 9Yy daf OF
oY N dx ox 0y, dy, oy,
OY N ; dyn OYn oviT I df T OF T
| oy, de Ox dyy Ildyy 1 L oyy |
dy: oY1
df_8F+{8F aF] da df OF [df df} O
dx ox 0y, XTI d'L:IN dz ox dy, dy 81:’1\]
da ox
N

| 04
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Application of Coupled Adioint Derivatives

yb=33% w1 mom m

al Thizknesz (mm): 5 10152023530 35 Cp: 1 €6 Czo02 06 |
Z
8F 0.5 L ‘ x
T a
N 1o ©
AF
o 0.5
4
32 34 4 36 38

yb=66%

10F

ar -
-1-0.8
B a
.l 1o
| RALH

5 - N y 1
Wy 22 a4
0.14} 1 er
12
0.12}¢ 15+
1o |5
S ot -22 g 1
n.oa} 4 g
<05}
0.6} 16
02 04 p% 08 1 05 0.2 0.1 0.6 0.8 1

y/b

[Kenway, Kennedy and Martins, AIAA Journal, 2013]


http://arc.aiaa.org/doi/full/10.2514/1.J052255

Application to MDO of small satellite

Computational framework for gradient-based MDAO

0C /0v M;! Y1 o} v v,

dCy /v My e Cn vy Ly
N ) N , ~— —~—

) ) (2) (1)
Component Jacobian Preconditioner solve
@) ®)) (D

Triangular Exact Back sulbst. Exact solve
Preconditioned Exact Preconditioner No action
Factorized Exact Exact inverse No action
Jacobian-free Directional derivative No action

Used to solve for millions of states and tens of
thousands of design variables

— b 4
-) . a | c

| O€


http://mdolab.engin.umich.edu/content/large-scale-mdo-small-satellite-using-novel-framework-solution-coupled-systems-and-their
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Further Reading

http://mdolab.engin.umich.edu/publications

Martins and Lambe, “Multidisciplinary Design Optimization : A Survey of Architectures”,
AlIAA/, 2013 (In press)

Martins and Hwang, “Review and Unification of Discrete Methods for Computing
Derivatives of Single- and Multi-disciplinary Computational Models”, AIAAJ,2013 (In press)


http://mdolab.engin.umich.edu/publications
http://mdolab.engin.umich.edu/content/multidisciplinary-design-optimization-survey-architectures-1
http://mdolab.engin.umich.edu/content/review-and-unification-discrete-methods-computing-derivatives-single-and-multi-disciplinary
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