

High Energy Atmospheric Reentry Test (HEART)

Overview of Proposed Flight Test

21 June 2012

Henry Wright Dr. F. McNeil Cheatwood

Motivation for HIAD

25

Mach Number

- Aeroshell size limited by Launch Vehicle fairing. HIAD could reduce constraints of launch vehicle fairing on entry system size.
- Lower ballistic coefficient from increased drag area allows higher altitude deceleration (aerocapture or entry) providing access to higher surface elevations and/or increased landed mass (MSR, Robotic Precursor missions to Mars)
- Increased time for EDL sequence to allow for additional maneuvering – either deceleration for larger payloads and/or precision landing
- Mars thin atmosphere makes it difficult to decelerate large masses and limits accessible surface altitudes.
 HIAD could provide access to higher elevation terrain (such as Mars Southern Highlands)
- Improved payload access

Overview of HIAD Activities

Development and ground testing of HIAD components. Sub-orbital flight tests on a cost-effective test platform (heating, lift, maneuverability).

Flight test to demonstrate system performance at relevant scales and environments.

ARMD and OCT investments spans these elements

Potential on-ramps for future investments.

Technology Development & Risk Reduction for Human Mars Missions

DoD Applications

HEART Summary

NASA

HEART is a Flight Test...

- To demonstrate performance in an environment relevant for robotic Earth and Planetary entry (Mars & Titan)
- To demonstrate effects of scale on development and performance
- Provide data needed to correlate and update high fidelity predictive models (environments, TPS, structures, etc.)
- To demonstrate the ability to be integrated into existing spacecraft without wholesale changes in capability

HEART by the numbers...

- Entry Mass: 3500 5500 kg
- Downmass: 0 2000 kg
- Ballistic Coeff.: 40 80 kg/m²
- 8-10 m diameter HIAD
 (55-60 deg sphere cone)

HEART Concept of Operations

Launch Configuration: HEART and Cygnus

Cygnus SM + Interstage + Stowed HIAD Module + Flight restraint with cover + PCM + Upmass Cargo

Separation & Deployment Configuration: HEART and Cygnus

Cygnus SM + Interstage + Stowed HIAD Module + Flight restraint with cover + PCM + Downmass Cargo

HEART Entry Configuration

Trajectory

Inflatable Structure Test Article (6 m)

(::

2

3

0.

•

•.

Thermal Protection System

TPS – Flexible, Insulating, Multi-Layer Laminate

Nextel – BF-20 Nextel – BF-20 Pyrogel – 2250 Gas Barrier (Kapton + Kevlar)

Inflatable Structure

Nextel Outer Layer

Flow

HEART TPS Maturation (HIAD 1st Generation TPS)

Aeroheating Environments

Peak Heat Rate point (2255) Modified configuration *Minor sensitivity (~10%) to angle of attack*

Peak Heat Rate point (2255) Modified configuration Unmargined heat rate for design assessments

Summary/Conclusion

- HEART flight test will demonstrate the readiness of HIAD for mission infusion
- HEART will demonstrate capabilities consistent with future robotic planetary missions
- > HEART has a clear path for implementation

>HEART flight test is ready and relevant

HEART Inflatable Structure Maturation (HIAD 1st Generation IS)

Rigid Structure

Baseline Rigid Structure

- Aluminum (Composite future study)
- Supports subsystems
- Provides load path for IAD to ballast (PCM)

Cruise Configuration: HEART and Cygnus

Cygnus SM + Interstage + Stowed HIAD Module + Flight restraint with cover + PCM + Upmass Cargo (or Downmass Cargo)

HEART Interfaces With Cygnus & Antares

HIAD External Interfaces (depicted in stowed HIAD configuration)

C = Thermal Conditioning

NASA

Inflatable Structure

Attachment of Inflatable Structure to Rigid Structure

Avionics Subsystem – 1 of 2

NASA

Avionics Subsystem – 2 of 2

Element	Description
Controller	FPGA based sequencing controller. Inflatable structure pressure is primary controlled item
Telecom	S-band to TDRSS – critical events; continuous; omni patch antennas mounted on PCM X-band to ground station(s) – all data (including resend of critical events); after blackout; patch antenna(s) on the nose
Navigation	Space Integrated GPS Instrument (SIGI) – includes IMU and GPS; GPS antennas mounted on PCM; pressure switch for altitude – only return navigation sensor data, no navigated solution determined in-flight
Data Acquisition	Multiple data acquisition units – include signal conditioners and communications interfaces
Electrical Power	Primary batteries, switching/isolation, grounding
Sensors	Thermocouples in TPS layers, Heat Flux sensors on nose, pressure transducers at nose (FADS), pressure transducers on back side, accelerometers on inflatable structure, load cells at strap mounts

Inflation Subsystem

HEART Inflation Subsystem is comprised of components rated for the launch and entry environments while meeting the torus inflation and pressure control requirements.

NA SA

Thermal Subsystem

- Thermal subsystem consists of
 - Passive components coatings, thermal straps, MLI
 - Active components thermostatically controlled heaters
- Component sizing considers cruise to/from ISS while deenergized; berthed at ISS – nadir and zenith – while deenergized; and Entry while energized
- Influence of packed IAD considered including sensitivity to varying packing density (minimal)
- Straightforward approach to maintain components within limits

21 June 2012

23

With Heaters

Min about. -38°F

Environments – 1 of 2

Peak Heat Rate point (2255) Original configuration Elliptic nose with low curvature; includes discontinuity at nose to conic interface

Peak Heat Rate point (2255) Modified configuration Nose curvature increased; tangent point moved aft; reduced discontinuity at nose to conic interface