Generic Mission Architectures

benefiting from these instruments
Andrew Ball

IPPW9 Short Course on Probe Science Instrumentation Technologies, Toulouse, 16-17 June 2012

Overview

Definition & examples

Mission Architecture?

What is a (Probe) Mission Architecture? (1)

- A top-level* description of the spacecraft elements and their relation to each other, the mission target and Earth during mission operations
 - *May be part of a higher-level programme architecture
 - Devised as a means to address a set of mission objectives...
 - ...or alternatively to show how a set of heritage elements may be used.
 - Can be described as part of the mission profile

What is a (Probe) Mission Architecture? (2)

- The mission architecture indicates:
 - the main events of a mission timeline
 - E.g. launch, orbit insertion, separation, landing,...
 - configuration of the spacecraft
 - E.g. launch configuration, orbiter or carrier, number of probes, ...
 - configuration of key systems
 - E.g. power source, EDL architecture
 - often also the communications scenario
 - Data relay vs. Direct To Earth (DTE), ground segment
 - May or may not show the orbital geometry...
- (There's probably no such thing as a generic mission architecture!)

PHOBOS SAMPLE RETURN MISSION PROFILE

Sample Return Architecture

iMARS Final Report: http://mepag.nasa.gov/reports/iMARS FinalReport.pdf

EDL & EDI architecture

Mission Architecture vs. Complexity

- Ground-based
 - telescopes, radio science, laboratory, analogues, meteorite & sample analyses

9

Some Benefits of In Situ Investigation

- Measurements that are impossible remotely
 - Many environmental parameters, physical properties
 - Detailed composition (trace el'ts, isotopic,...), petrology
 - Measurements hindered by the atmosphere
- Validation of measurements or inferences from remote investigations, modelling, lab simulation, etc.
- Scales much finer than achievable remotely
- Interaction with the environment (active techniques)
- Sampling of material for in situ analysis
- Access to sub-surface (sampling, thermal meas., etc.)
- Mechanical coupling for seismology & rotation meas.
- Sampling for return to terrestrial labs

Single or Multiple probes?

- Network measurements
 - Meteorology
 - Seismology
 - Geodesy
- Can be used for redundancy (though rarely since mid-80s)
- Multiple probes on a single craft likely to mean ballistic entry and large landing ellipse, which luckily is OK for network experiments
- Multiple probes demanding on data relay architecture
 - covering 4 probes at the same time as orbit insertion practically impossible!

Probe Delivery

- Atmospheric probes to: Venus, (Earth), Mars, Jupiter, Saturn, Titan, Uranus,
 Neptune
- Generally from a carrier spacecraft of some sort
 - Earth's Moon (and Earth) are the only possible exceptions
- Delivery from hyperbolic, highly elliptical or near-circular orbit
 - Together with the target's escape speed and rotation speed, the geometry of this choice determines the entry speed relative to the atmosphere
 - And together with the Flight Path Angle (FPA) and other parameters helps determine what ballistic coefficient, aeroshell design, Thermal Protection System (TPS) to select
- The probe may have the correct velocity already after separation
 - If not, probe needs its own deorbit propulsion.
- Probe may be on course for entry
 - Avoidance manoeuvre if carrier needs to survive for orbital mission and / or data relay
- Importance of atmospheric models (profiles of density, wind, variability,...)
- And of surface datasets (elevation, slopes, thermal inertia,...)
- Landing ellipse combined effect of the various dispersions

Spin

- Spin may be needed for stability and thermal reasons during coasting phase
- May be imparted by parent spacecraft or separation mechanism
- May be too fast
 - yo-yo despin
- May be too slow
 - Spin-up thrusters
 - Spin vanes
 - Oscillation dampers
- If guided entry then needs to be zero
- Useful for stability (and heat distribution) during ballistic entry

Entry

- Pre-entry environment
 - Fields, radiation
- Entry state
 - Navigation problem
- Probe dynamics IMU
- Engineering instrumentation
 - Studies response of system to the environment but also needs to know what the environment is
 - Gas properties, heat fluxes, TPS response
- Science instrumentation
 - Aims to derive properties of the target environment independent of probe
 - Probes in the flow, upper atmospheric composition

Descent

- Mars descent very short (~2min) and mission-critical so difficult to add experiment objectives
- Venus, Earth, Titan, Giant planets medium to long descent
- For giant planets and (most of) Huygens, the descent is the mission
- Many more measurement opportunities than entry:
 - Probe dynamics (more complex than entry, however)
 - Radio science
 - Local
 - Integrated (up or down)
 - Surface imaging, radar
 - Analytical measurements
 - Sampling and analysis
- Measurements have to be compatible with the descent dynamics and environment
- Some may require sophisticated IF to the environment needs to be compatible with the platform

Phased Descent Measurements

- Hostility of Venus lower atmosphere may mean some in situ measurements are only possible higher up (>30km) and one accepts loss of part of the payload
- i.e. tailor payloads to different altitude ranges or surface

DTE vs. Relay

- DTE used nowadays usually for EDL monitoring only
- DTE may however be attractive for some missions where the objectives can be achieved with the data rate / volume available and establishing a data relay is too costly for the envelope
- Mission architecture has to achieve geometry for relay
- Deep probes watch out for absorption

Power Architecture

- Primary battery
 - Suited to short / limited duration missions
- RTG + secondary battery
 - Suited to cold targets, e.g. Mars and Titan
- Solar array + secondary battery
 - Suited to longer missions in inner solar system: Mars surface, maybe Venus balloons?

Targeting

- The need to target a particular location (small area for landing ellipse) may drive the mission architecture
 - Guided entry instead of ballistic
 - Rover to reach the target from the landing site

Duration

- How long does it take to carry out the desired objectives of the mission in the atmosphere / on the surface?
- Major effect not just on any consumables but also power and thermal architecture, e.g. 'keep alive' heaters or cold electronics with a limited number of cycles?

Preprogrammed vs. commanded

- All probes preprogrammed to surface the long descent destinations are too far away to make commanded operation attractive
- Long-lived balloons would be a possible exception
- Interaction almost always desirable once probe is on the ground

Programmatics & Mission Architecture

- What is to be classed as science payload?
 - Usually selected by AO
- What is provided by the 'system'?
 - E.g. system data, deployments, sampling,...
 - Can't count on science return but there often is one, even if not guaranteed
 - (Check auxiliary information, data rights, archiving)
- What needs to be in there at the top as a programmatic objective?
 - E.g. tech demo, data relay for other missions, compatibility with other sample return elements...

Measurement Categories

- Geodesy / tracking
- 'Space physics'
- Atmospheric physics profiles
- Aerosol physics
- Fluid physics
- Sub-surface sounding
- Surface physical properties
- Imaging

- Photometry & spectrometry
- Microscopy
- Chemical composition
- Mineralogical & elemental composition
- Sample analysis
- Sample return

Geodesy / tracking

- Radio science (Doppler ranging, VLBI)
- Laser geodesy (retroreflectors)
- Radar/laser ranging/altimetry
- Gravimetry (link to seismometry)

Apollo LRRR

'Space physics'

- Radiation
- Magnetometry

ROMAP

Potentially also electric field, plasma sensors

Atmospheric physics profiles

- Density (entry accelerometry)
- Temperature
- Pressure
- Humidity
- Wind / Turbulence
- Electrical field / conductivity / waves

Aerosol physics

- Dust detector
- Nephelometry
- Cloud particle size spectrome
- LIDAR (for clouds)

Phoenix Property Phoenix Phoenix Property Phoenix Property Phoenix Property Phoenix Property Phoenix Phoen

Fluid physics

- Refractive index
- Density
- Motion (waves)
- Speed of sound
- Microphone
- Electrical conductivity / permittivity

Sub-surface sounding

- GPR
- Radio Reflection Tomography
- Radio Transmission Tomography
- Sonar
- Seismometry (active & passive)

Surface physical properties

- Temperature / profile / conductivity / diffusivity / heat flow (IR radiometry, T sensors)
- Magnetic permeability / susceptibility
- Electrical Permittivity / conductivity
- Abrasion
- Adherance
- Landing dynamics / attitude
- Geotechnical Properties
 - Penetration resistance
 - Drilling resistance
 - Trafficability
 - Bulk density

Imaging

SCS

- Cameras
 - Descent
 - Panoramic (wide-angle)
 - Narrow-angle
 - Close-up
- Filters, polarisation, etc.
- Imaging of passive elements e.g. windsocks, sundial, colorimetric patches, magnets, etc.
- Imaging spectroscopy (Vis, near-IR to thermal IR)

Photometry & spectrometry

- Atmospheric profiling
 - Upward-looking
 - Downward-looking
- Atmospheric transmission to surface
- Temporal variation
- Spectral resolution (e.g. UV)
- Surface mineralogy
 - Point spectrometer
 - Raman

UVIS

Microscopy

ÇIVA-M

- (Imaging) IR Microscope
- Scanning Electron Microscope
- Atomic Force Microscope

Chemical composition

- Chemical gas analyser
- Geochemical indicator
- Oxidation sensor
- Helium abundance detector
- Evolved water experiment (e.g. thermogravimetry)
- Wet chemistry lab
- Tuneable diode laser spectrometer
- Neutral Mass Spectrometer

Mineralogical & elemental composition

- X-ray diffractometer
- X-ray Fluorescence Spectrometer
- Alpha-(Proton-)X-Ray-Spectrometer
- Laser Ionisation Breakdown Spectrometer

MIMOS II

- Mößbauer spectrometer
- Neutron spectrometer / pulsed neutron source
- Gamma ray spectrometer

Sample analysis

- GCMS
- Aerosol collection / pyrolysis
- Evolved gas analyser

•

Beagle 2 - Gas Analysis Package

Sample return

- Atmosphere
- Aerosols
- Dust
- Surface regolith
- Rock samples

Trends

- Network science (geophysics, meteorology)
- Astrobiology
- Mobility (across & below surface)
- Bulk properties (x) tracers
- Wider international participation / co-operation
- Lower frequency of missions
- Higher data rates / volumes
- More narrowly focused objectives

- Importance of landing site selection
- Sampling and sample return
- More exotic / extreme target environments
- Exoplanets / comparative planetology
- Money-limited
- Exploration context
- Establishment of programmes
- More precise measurements of the same targets / Focus on data quality
- Narrow objectives for smaller missions only

Payload Mass Fractions

