The Solar System from formation to habitability

Michel Blanc IRAP, Observatoire Midi-Pyrénées Toulouse

IPPW short course June 16, 2012

Outline

- 1 Architecture of the Solar System
- 2 Formation of planets, satellites and small bodies
- 3 The study of planets as complex systems
- 4 Habitability in the solar system

1 – Architecture of the Solar System

Terrestrial Planets and main belt asteroïds

Outer solar system

Beyond Neptune, the Kuiper belt

Still beyond, Oort's cloud

Gelectic Tides Nesrby Stars Large Clouds

In summary: Primordial disk and cometary reservoirs

Galactic tides

2 – Formation of planets, satellites and small bodies

The four phases of planetary formation

The basic ingredients of planet-forming

Materials in the Solar Nebula				
	Metals	Rocks	Hydrogen Compounds	Light Gases
Examples	iron, nickel, aluminum	silicates	water (H ₂ O) methane (CH ₄) ammonia (NH ₂)	hydrogen, helium
Typical Condensation Temperature	1,000-1,600 K	500-1,300 K	<150 K	(do not condense in nebula)
Relative Abundance			-	
(by mass)			-	
	(0.2%)	(0.4%)	(1.4%)	(98%)

... + a few percent organic matter !

Condensation of the Solar Nebula

Rocky Planetesimals

Icy Planetesimals

Accretion of solid bodies from dust to planetesimals finally leads to the formation of:

- Solid/rocky planets;
- The cores of glant planets

In the inner solar system :

Accretion of condensates of metals and silicates

In the outer solar system ices condense too

... then gas is accreted on giant planets cores by gravitational collapse

Gas accretion on core and orbital migration

Bryden et Lin

Nelson et al., 2000

Mercury

Moon

Pluto

The four Galilean satellites

Io Europe Ganymede Callisto

The Rosetta mission

3 – Planets as complex systems

3 examples: Jupiter system Titan Enceladus

Exploration of the Jupiter system

The biggest planet, the biggest magnetosphere, and a mini solar system

Jupiter

- Archetype for giant planets
- Natural planetary-scale • laboratory for fundamental fluid dynamics, chemistry, meteorology,....
- Window into the formational • history of our planetary system

Magnetosphere

Largest object in our Solar System

JUICE

- **Biggest particle accelerator in the Solar System**
- Unveil global dynamics of an astrophysical object

Coupling processes

Hydrodynamic coupling Gravitational coupling Electromagnetic coupling

Laplace resonance Europa

Satellite system

- Tidal forces: Laplace resonance
- **Electromagnetic interactions to** magnetosphere
 - and upper atmosphere of Jupiter

Titan is a perfect example of a complex planetary system, because of the strong coupling between all layers

Titan's study is extremely interdisciplinary and involves : atmospheric physics, geology, meteorology, circulation, astrobiology, cryovolcanism, etc

Titan's methane cycle

Enceladus, another complex

Enceladus plume

4 - Habitability in the solar system

Where can liquid water exist?

1 - At the surface of solid bodies when their temperature is between freezing and boiling water

2 – Inside solid bodies made of water ice, when the pressure and temperature meet the conditions for liquid water

At a certain depth inside icy satellites (Europa, Ganymede, Titan, Enceladus...)

Habitability of terrestrial planets

The Habitable Zone around a Star

Presence of water (ice) to-day

North Pole Water Map

2001 Mars Odyssey Gamma Ray Spectrometer H2O Low H2O High

Mars cryosphere from MARSIS radar

"Follow the Water"

Common Thread

W

A

T

E

R

Determine if Life ever Arose on Mars

Characterize the Climate of Mars

Characterize the Geology of Mars

When Where Form Amount

Prepare for Human Exploration

Goals of future Mars exploration (NASA)

NASA's 2011 Mars Science Laboratory

Scientific Objectives for MSL

Explore and quantitatively assess a local region on Mars' surface as a potential habitat for life, past or present.

- A. Assess the biological potential of at least one target environment.
 - 1. Determine the nature and inventory of organic carbon compounds.
 - 2. Inventory the chemical building blocks of life (C, H, N, O, P, S).
 - 3. Identify features that may represent the effects of biological processes.
- B. Characterize the geology and geochemistry of the landing region at all appropriate spatial scales (i.e., ranging from micrometers to meters).
 - 1. Investigate the chemical, isotopic, and mineralogical composition of martian surface and near-surface geological materials.
 - 2. Interpret the processes that have formed and modified rocks and regolith.
- C. Investigate planetary processes of relevance to past habitability, including the role of water.
 - 1. Assess long-timescale (i.e., 4-billion-year) atmospheric evolution processes.
 - 2. Determine present state, distribution, and cycling of water and CO₂.
- D. Characterize the broad spectrum of surface radiation, including galactic cosmic radiation, solar proton events, and secondary neutrons.

The data/information contained herein has been reviewed and approved for release by JPL Export Administration on the basis that this document contains no export-controlled information.

Habitability of giant planets satellites

Ganymede

The phase diagram of water (ice)

The habitable zone(s) in the Solar System ... and beyond

Thank you for your attention