

Application of High Pressure Textile Inflatable Structures for Planetary Probes

David Jurewicz^{1,2}, Glen Brown¹, Tom Price¹, Brian Gilles^{1,2}, Leo Lichodziejewski², Christopher Kelley², and Ben Tutt²

¹HDT Engineering Services

² HDT Airborne Systems

History of High Pressure AirBeams®

- AirBeams® originally developed to rigidize parafoil type parachutes.
- Applicability to rapidly deployable large scale shelters was quickly discovered and a product line was successfully launched. Current shelter widths include 20, 32, and 40 ft. width shelters of varying lengths.

- Large-scale aircraft maintenance structures have been developed to demonstrate the scalability of AirBeams® and have proven themselves in extreme environments.
- AirBeam® technology was also applied to Inflatable Aerodynamic Decelerators (IADs) and research was conducted on the feasibility in early trade studies and prototyping.
- Airbeams® were also applied and tested on deployable inflatable wing demonstrations, and they have been wind tunnel tested but have not yet been full-scale flight tested.

Inflatable Aerodynamic Decelerators

High pressure inflatables were selected as potential candidates for rigidizing deployable Tension-Cone decelerators and Stacked-Torus configurations capable of hypersonic re-entry.

Tension Cone

Fence" on other decelerators.

AirBeams were investigated for "Attached Torus" configuration and as a "Burble

6m Stacked Torus

- LS-Dyna FEA is used to model inflatable decelerators.
 - Models use non-orthogonal braided tori.
 - Complex interactions occur between webbing, inflatable, and bonds requiring specialized techniques.

3m IRVE-3 model included flexible TPS.

Additional 3m and 6m models were fabricated for wind tunnel testing.

Most recent models have been instrumented to collect in-situ load data for model comparison and verification.

Attached Torus with Burble Fence

Inflatable Wings

- A 10 ft. wing specimen was fabricated to demonstrate adaptive wing camber through rib warping.
- The 10 inch spar inflates to provide the skin tension and support the aerodynamic loading.

A 25 ft. span with integrated aileron and laminate textile skin was fabricated and used for packing and deployment testing.

• The 25 ft. model was successfully packed around a representative fuselage and deployed in multiple orientations (nose level, nose down, etc.).

Deployable (inflatable) wing technology would allow for a new generation of planetary exploration similar to that researched for the ARES MARS SCOUT mission.

- AirBeam® spars have proven highly scalable and applicable to wing spans to suit any mission.
- On-going work is being conducted to reduce the mass of potential inflation systems.

Conclusions

- High pressure textile inflatable structures utilizing the AirBeam® technology have proven highly successful in the development of lightweight deployable aerodynamic structures that can be utilized on inter-planetary missions.
- Work is being conducted to increase the capabilities of the structures in high temperature and extreme environments in addition to high loading conditions.
- Ground verification testing has successfully proven validity of analytical estimates of structural performance, and the addition of in-situ measurements has proven invaluable to model verification.