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DEPARTMENT OF

aerospace
engineering

The Jupiter Icy Moons Explorer mission (JUICE) has been selected for the L1 launch slot of ESA's Cosmic Vision science programme. It will provide scientific
investigations of Jovian moons, including Europa and Ganymede. It has been suggested that the mission could carry penetrator probes to each of these Moons. The
probes would be delivered by the spacecraft to impact into the moons’ crusts and remain there for one Earth week on Europa and two Earth weeks on Ganymede. The
low temperatures experienced and hostile and remote nature of the moons present a serious challenge to the thermal and power systems of the probes.

The purpose of this study was to address and overcome these challenges by arriving at a probe design for each moon which would allow the probes to survive for their
mission lifetimes and beyond. This has been achieved in both cases, with the Europa probe surviving for over a year, and the Ganymede probe for 17 days with the

option to extend this to over 2 months with an increased power budget.
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Trade-offs

Power generation methods were compared:

Insulation Heater Vacuum Flask - Batteries
- - - - ° Solar panels TEC to STU conversion
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« impact harvesting S
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The vacuum flask concept also offers- . Laser power beaming RTG A2
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- Possibility to add heater/insulation at later stages « RTG’s Al requirement, no margin
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It was decided to use the A-2 RTG, and a 0.55kg Li-ion battery. For a 20%
margin, a hibernation system is suggested, gathering data 82% of the time.

Iterations

The structural snubbers (struts
survive impact with no damage) give
a max lifetime of 10 hours. The final
design with non structural snubbers )
(struts sustain damage without required to
shattering upon impact) gives a prgvent the_ prope
lifetime of 16.9 days. With 2 Xx going _out5|de 'ts
0.5W heaters this could be extended operating .

to over 2 months. temperature limits.
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and radiation to verify the ESATAN results. . .
Final Design

cooling and a sunshield required.

The Heat Transfer on Europa is much greater Model Cooling Method
Side and rear struts - | =~ than any other temperature case, thus an Cases
5mm~2 Graphite Poly Payload Bay 1 Inner Shell - 5mm adaptive design was created, making use of Extended Cooling
cyanate Composite Titanium alloy with 10mm a retracting strut contacting a heat sink. Earth strut + N>
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