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ABSTRACT

In recent years, considerable attention has been paid to
planetary hoppers for their potential to overcome the lim-
itations on landing precision and mobility facing current
planetary surface exploration technologies. This paper
describes the development of a unified vision and iner-
tial navigation system for propulsive planetary hoppers
and provides demonstration of this technology. A sen-
sor testbed, including a stereo vision package and inertial
measurement unit, was developed to act as a proof-of-
concept for this navigation system architecture. The sys-
tem is shown to be capable of outputting an accurate nav-
igation state estimate for motions and trajectories similar
to those of planetary hoppers.

1. INTRODUCTION

Planetary hoppers are vehicles that traverse planetary sur-
faces using chemical exhaust propulsion alone, freeing
them from many of the limitations of rovers and station-
ary landers. This allows hoppers to fine-tune their landing
sites to very high levels of precision, while also allowing
exploration of a wide range of otherwise inaccessible ter-
rain. For this reason, analogies such as “reusable landers”
and “airless helicopters” are sometimes used to describe
the unique mission profiles they enable.

Hopping vehicles provide advantages over traditional sur-
face exploration vehicles, such as wheeled rovers, by
enabling in-situ measurements in otherwise inaccessible
terrain [1]. However, significant development over pre-
viously demonstrated vehicle navigation technologies is
required to accomodate the additional, unique motions of
hoppers that must be accounted for beyond those typical
of conventional planetary landing and surface navigation
systems [2]. An example of a conceptual hopper is shown
in Fig. 1.

Hopping requires a fully autonomous, internal navigation
system capable of handling rapid, near-surface motions
in an unknown environment. Autonomy is required due
to the long communication delays to the Moon or other

Fig. 1: A conceptual hopper designed for use on the
moon. Image credit: Draper Laboratory/Next Giant Leap

planets, which eliminate the possibility of remote oper-
ation due to the rapidity of hopper motions. The sys-
tem must be entirely internal and self-contained because
installing a large-scale external navigation system (e.g.,
a GPS-like system) on another planetary body is pro-
hibitively expensive. The system must be capable of nav-
igating in an unknown environment, as a hopper might
be called upon to explore areas unavailable from orbital
imagery, such as permanently shadowed craters or under-
neath overhangs of cliffs [3].

The navigation systems developed for traditional explo-
ration vehicles cannot meet these needs. Navigation sys-
tems onboard prototype hoppers currently in develop-
ment for testing on Earth are typically dependent on ei-
ther an external system, such as GPS [4], or prior knowl-
edge of their environment [5]. Terminal-descent and
landing navigation systems, such as [6–9], are not de-
signed for extensive near-surface operation or high-rate
translational motion. Helicopter navigation systems, such
as [10–13], are capable of handling translational motion,
but are generally dependent on GPS or other external
systems, such as a barometric altimeter or remote oper-
ator.



2. UNIFIED NAVIGATION SYSTEM

Inertial and stereo vision navigation systems were com-
bined using an Extended Kalman Filter (EKF) to form a
single, unified inertial and vision-based navigation sys-
tem. Inertial navigation systems work well for high-rate,
short-period motion, and are independent of their oper-
ational environments. However, low-cost and mass in-
ertial measurement units (IMUs) have limited capability
to precisely measure low-rate, long-period motion due to
sensor drift over time.

Vision navigation systems work well for low-rate, long-
period motions, but poorly for measuring rapid rota-
tions. Performance of vision systems is also dependent on
characteristics of their operational environments, such as
lighting conditions, which cannot always be ensured [2].
The unified system, which combines the previously de-
veloped inertial and stereo vision navigation systems de-
scribed below, exceeds the navigation performance of ei-
ther system taken independently and allows the use of
lower cost and mass sensors [3].

2.1. Inertial Navigation

The available Inertial Navigation System (INS), devel-
oped by Draper Laboratory, combined a low-grade IMU
with a GPS receiver, in a similar fashion to those de-
scribed in the literature [14,15]. Taken alone, the IMU ac-
crues error exponentially with time (a characteristic com-
mon to any IMU), so absolute position updates from the
GPS receiver were used to frequently constrain this error
growth using an EKF. IMUs are well suited to measure-
ment of high-rate, short-period motion, but the integrity
of the INS is rapidly lost when GPS updates become un-
available [2].

2.2. Vision Navigation

The available vision navigation system was the Draper
Laboratory’s stereo vision-based Simultaneous Localiza-
tion and Mapping (SLAM) implementation, hereafter
referred to as ‘DSLAM,’ similar to those in the liter-
ature [16]. The basic concept of DSLAM is that a
map of an unknown environment is built from observed
3-dimensional “landmarks,” whose locations are deter-
mined from 2-dimensional “features” detected in pairs of
stereo images, and the observer is localized within this
map. DSLAM acquires images from a stereo camera and
then performs the following steps to determine the posi-
tion of the camera relative to its initial position: feature
detection, feature matching, pose estimation, and land-
mark registration [3].

3. TEST HARDWARE

A sensor testbed, including a stereo vision camera, iner-
tial measurement unit, and GPS receiver, was developed

Fig. 2: The Stingray testbed includes a stereo camera,
IMU, and GPS antenna. The IMU is accessed using a
dedicated interface board that also houses additional, un-
used sensors.

to allow evaluation of various combinations of navigation
sensors and algorithms [3]. This hardware and software
testbed, called “Stingray,” has a highly modular architec-
ture, allowing additional sensors to be easily added to the
system for real-time logging and incorporation into navi-
gation algorithms. The algorithms themselves are fully
encapsulated within the software framework, allowing
multiple algorithms to run simultaneously for real-time
performance comparison. Stingray, shown in Fig. 2, is
capable of operating independently of any particular car-
rier vehicle, allowing it to be tested onboard various flight
vehicles with little or no modification required.

3.1. Computer

At the core of the Stingray system is a Jetway NF81
single-board computer. The NF81 is a mini-ITX form-
factor (17 x 17 cm) motherboard with an AMD Brazos
eOntario G-Series APU (combined CPU and GPU). It has
8 GB of DDR3 RAM and an 80 GB mSATA solid state
drive (SSD). The system also has a wide range of I/O,
including eight USB ports, two RJ-45 (Ethernet) ports,
and ten pins of GPIO. A Firewire adapter on a mini-
PCIe slot adds an additional three IEEE 1394 Firewire
ports.

The Stingray computer runs Ubuntu Linux 11.04 Server
Edition, but the software framework is cross-platform
compatible, allowing the code to also run on Windows
or Mac OS. The computer itself is far more powerful
than a typical, space-rated flight vehicle would likely use,
ideally allowing multiple navigation algorithms to run in
parallel simultaneously for comparison.

3.2. Inertial Measurement Unit

The IMU currently in use on the system is an Analog De-
vices ADIS16364BMLZ industrial-grade MEMS IMU.



A Draper-developed interfacing board, including a dig-
ital signal processor (DSP), provides a convenient inter-
face to the IMU, as well as a magnetometer, barometer,
and additional cameras, though they are currently unused
for this project. The DSP provides precise timestamping
of the IMU data, and is capable of precisely recording an
external input pulse from the stereo camera.

3.3. Stereo Camera

The stereo camera is a BumbleBee2 monochromatic
stereo vision camera from Point Grey Research (model
BB2-08S2M-6) with 6 mm focal length lenses (43 de-
gree field of view) and frame rate of 20 fps. The cam-
era resolution is downscaled to 512 x 384 pixels for each
camera prior to image processing. The camera outputs
a strobe pulse to the IMU interface board at the start of
integration of each camera frame, which increases timing
accuracy by over three orders of magnitude compared to
using the primary IEEE-1394a interface for timing pur-
poses.

3.4. GPS Receiver

GPS data is provided by a uBlox EVK-6T Precision Tim-
ing Kit and ANN-MS-0-005 active GPS antenna, which
is capable of outputting GPS position and velocity esti-
mates as well as raw pseudorange data. GPS position-
ing data is typically accurate to within 2-3 meters and is
logged by the main computer over a USB connection at
approximately 1 Hz. Although GPS data is not available
to planetary hoppers, it is used during testing to provide
both an initial position for each dataset and an absolute
reference to compare against.

4. ADVANTAGES OF THE UNIFIED
NAVIGATION SYSTEM

The unified inertial and vision navigation system offers
many advantages over the individual systems by reduc-
ing IMU drift, improving IMU bias estimation, handling
rapid rotations, and managing periods of sensor outages.
Fig. 3 and Fig. 4 show a performance comparison of the
individual and unified navigation systems for a trajectory
involving a straight line and two 90-degree corners, re-
spectively.

4.1. IMU Drift

Due to numerical integration of sensor noise, IMU drift
error grows exponentially with time until constrained by
an external sensor update. Despite growing increasingly
erroneous, IMUs have very low drift for brief periods
immediately following updates. An IMU receiving fre-
quent updates is capable of providing accurate measure-
ments over a wide range of rotational rates and accel-
erations. DSLAM can provide these updates more fre-
quently (based on the frame rate of the camera) than

Fig. 3: Navigation results from the stereo vision
(DSLAM), inertial (INS), and unified (Filter) navigation
systems for a straight-line trajectory. The unified system
accepts GPS updates for self-calibration during the first
segment of the trajectory, then GPS updates are turned
off and used only for comparison. The unified filter re-
duces drift in both the IMU and vision systems.

GPS, improving both the accuracy and usability of the
IMU measurements. Fig. 5 shows the comparative per-
formance of the IMU being updated by GPS versus by the
vision system. Near the start of this path (at the left of the
figure), the INS system’s heading is inaccurate. The filter
requires several GPS updates to correct the error, which is
ultimately over-corrected for, leaving the IMU drifting in
the opposite direction. The unified trajectory (comprising
of vision and IMU updates) is updated more frequently,
resulting in a significant reduction in the effects of IMU
drift through more rapid and accurate corrections.

4.2. IMU Bias Estimation

The IMU rapidly drifts when unconstrained. This effect
can be reduced by estimating the biases of the IMU using
an EKF, which typically requires 30 to 60 seconds worth
of data for this system, and removing them. The EKF
in the INS system estimates these IMU biases using up-
dates from the GPS receiver, which provides a 3 degree-
of-freedom (DOF) position-only update at approximately
1 Hz. From the combination of these position updates
and the measurement of the gravity vector, the system has
sufficient observability into only 5 of the 6 total DOFs of
the IMU. The EKF has limited observability of the Z-axis
(yaw) gyro bias, as gravity does not typically project into
this rotation axis in these operational scenarios.

Because DSLAM updates the filter more frequently, more
precisely, and with all 6 DOFs, the unified system con-
verges upon the IMU biases more rapidly and accurately
than it does with GPS updates alone. DSLAM outputs a
full 6-DOF navigation state at 20 Hz, is especially precise
when the camera is stationary, and requires no initial cal-
ibration period. For this reason, the sensors are kept com-



Fig. 4: Navigation results from the stereo vision
(DSLAM), inertial (INS), and unified (Filter) navigation
systems. The unified system is successfully able to nav-
igate the 90-degree corner without GPS updates, which
were turned off after the first corner. The inertial-only
system drifts significantly during the loss of GPS near the
beginning of the trajectory, but the vision updates keep
the unified system from exhibiting this same behavior.

pletely stationary for the first 120 seconds of any dataset
in order to collect particularly high precision vision data,
which speeds up the IMU bias estimation by the filter.
Fig. 6 shows the EKF gyro bias estimates over time for
the same IMU measurements processed with and with-
out vision updates. Not only does the addition of vision
data allow proper estimation of the Z-axis gyro bias, but
it also speeds up bias convergence for the X- and Y-axes.
This allows the filter to use the IMU more effectively,
improving the navigation performance of the unified sys-
tem.

4.3. Rotation Rates

Rapid rotations result in errors in the vision system be-
cause the tracked features are too rapidly lost outside of
the field of view of the camera. A well-constrained IMU
can detect these rotation rates and help the system either
maintain or regain its pose estimate after features are lost
or as features are rapidly exiting the field of view, as long
as the high-rate motion is brief in duration. In the unified
inertial and vision navigation system, the vision system
can provide accurate updates to the IMU until the high-
rate motion begins, and quickly re-constrain the system
again afterwards. As shown in Fig. 7, this results in im-
proved accuracy when traversing sharp corners.

4.4. Vision System Dropouts

The worst errors in the vision system occur when all
features are lost from the camera field of view, causing
the vision system to stop returning motion estimates (of-
ten called a “dropout”). This happens mainly in low-

Fig. 5: The effect of IMU drift when updated using low-
rate GPS (orange) versus high-rate vision (blue) updates.
The frequent updates from the vision system result in a
significant improvement in positioning accuracy.

contrast environments or due to lighting effects, such as
lens flares. During these brief outages, the inertial system
can continue to propagate the filter, allowing continued
output of a navigation state estimate. Fig. 8a shows an
example of a simulated 5 second vision dropout during a
straight traverse, and Fig. 8b shows a simulated 10 second
vision dropout during a gentle curve. Running indepen-
dently, DSLAM halts motion entirely when it cannot de-
tect enough features to calculate a camera pose estimate,
and the INS would typically begin to rapidly drift (note
that in these figures the INS is still being constrained by
GPS updates, in order to better depict the behavior of the
IMU during that time). When running with the combined
filter, the IMU bias and drift are better accounted for, al-
lowing the system to continue to navigate during brief
periods of complete outage by both the vision and GPS
systems.

5. SYSTEM TESTING

The Stingray navigation testbed was used to test the nav-
igation performance of the DSLAM stereo vision nav-
igation system and the unified inertial and vision navi-
gation system in unstructured outdoor environments. An
actual operational hopper was unavailable for testing, due
to issues of availability and operational costs. For this
reason, the system was designed to be portable and self-
contained, making it operational in a variety of alterna-
tive contexts, including those of a pedestrian or a car.
The experimental results presented here were selected for
their similarities to various challenges a hopper naviga-
tion system must overcome. For example, while pedes-
trians move more slowly than hoppers, they have fre-
quent, large disturbances and rapid rotations due to the
dynamics of walking. A car has slower rotation rates
and fewer disturbances, but velocities more comparable
to those predicted of hoppers.



Fig. 6: Filter-calculated estimates of IMU gyro biases with and without vision updates. By incorporating vision updates,
the filter gains visibility into the Z-axis gyro bias and is able to more rapidly converge upon the biases of all three gyros.

(a) Straight Segment (5 sec) (b) Curved Segment (10 sec)

Fig. 8: Simulated vision system dropouts during a straight (left) and gently curved (right) trajectory. The unified system
(in blue) is able to successfully navigate for brief periods in the absence of vision or GPS updates, making the system
more robust to inconsistencies and changes in its operational environment. The affected segments are plotted in bold for
emphasis. Note that the INS path still uses GPS updates here to constrain its error growth.

The results and discussion of system performance pre-
sented in this paper are based on three datasets selected
for their ability to address the challenges of hopper nav-
igation described in [2]. These datasets are discussed
based on the operational settings of walking in natural
environments and driving in urban environments. Dis-
cussion of additional datasets in the context of planetary
hopping is available in [3].

5.1. Walking in Natural Environments

Two of the presented datasets were collected while walk-
ing outdoors at Halibut Point State Park, near Rockport,
Massachusetts. The first route, referred to as “Halibut-
Trail” and shown in Fig. 9, followed a hiking trail through
the park for 790 meters. The hiking trail included natural
terrain ranging from an open field to a forest, with several
gentle curves.

The second route, referred to as “Halibut-Shore” and
shown in Fig. 10, followed the rocky Atlantic shoreline
for 180 meters at low tide. The only terrain visible in this
dataset was large rocks, and the trajectory included sev-
eral large disturbances and unsteady motion due to the
uneven terrain being traversed by foot.

5.2. Driving in Urban Environments

The third presented dataset, referred to as “Cambridge-
port” and shown in Fig. 11, was collected while driving
3.6 km through an urban residential area of Cambridge,
Massachusetts. This route included three laps around a
single block with only right turns followed by three laps
around an adjacent block with only left turns, for a total of
28 corners, starting and ending at the same location. This
makes it useful for evaluating cornering performance and
consistency. This route also had the higest velocities of
those presented, ranging from 7-9 m/s.



Fig. 7: The unified navigation filter improves perfor-
mance during short periods of high-rate motion, such as
sharp corners. DSLAM measures the corner to be 98◦,
while the unified system (shown with GPS updates turned
off) measures it correctly as 90◦. GPS updates are shown
for reference but were not used by the unified filter.

Fig. 9: Typical terrain for the Halibut-Trail dataset, which
involved walking on a wooded hiking trail.

5.3. Quantifying Error

A metric was used to objectively assess and compare the
positional accuracy of calculated trajectories. This met-
ric, called the Error Vector Sum (EVS) metric, is a mea-
sure of the similarity between two 3-dimensional paths
of points [3]. It can be used to summarize system per-
formance into a single numerical value, which can then
be used to compare navigational performance of multiple
trajectories. The EVS is not a perfect, all-encompassing
measure of system performance, but it can be a useful
tool for comparing navigation solutions.

The EVS metric is the sum of incremental errors of a
measured trajectory with respect to some reference, nor-
malized by the total distance traveled, as measured by the
reference. A detailed derivation is available in [3]. With
relative navigation systems, a small heading error early in
a trajectory can appear as a much larger error late in the

Fig. 10: Typical terrain for the Halibut-Shore dataset,
which involved walking on rocky terrain.

Fig. 11: Typical terrain for the Cambrideport dataset,
which involved driving in a residential neighborhood.

trajectory. This means that if error is calculated simply as
the distance from a particular point to truth, errors occur-
ring early in a trajectory would be weighted significantly
higher than those occurring later in a trajectory. The EVS
metric eliminates this problem by first removing the in-
fluence of previous measurements in the navigation sys-
tem, and then calculating the error only for only a specific
increment of the trajectory.

6. WALKING TESTS

The Halibut-Trail and Halibut-Shore datasets described
above involved walking outdoors in a natural environ-
ment. These datasets were processed using both the
vision-only and unified inertial and vision systems. The
EVS metrics calculated for the DSLAM and filter trajec-
tories are shown in Table 1.

6.1. Halibut-Trail Dataset

Fig. 12 shows both the vision-only and unified filter tra-
jectories, as well as GPS reference data, for the Halibut-
Trail dataset. GPS updates were used by the filter for cal-



Trajectory Halibut-Trail Halibut-Shore Cambridgeport

DSLAM 0.248 0.241 0.243
Unified filter 0.296 0.338 0.163

Table 1: DSLAM and unified filter error metrics for walking and driving trajectories.

Fig. 12: DSLAM and unified filter-calculated trajectories
for the Halibut-Trail dataset, which was collected while
walking on a wooded hiking trail.

ibration during the first 83 meters (10%) of the trajectory.
In the figures, the magenta “GPS Stop” marker indicates
where GPS was disabled. Near the last curve of both tra-
jectories, a particularly large error was caused by camera
glare, causing the only major divergence. Prior to that
point, the system successfully navigated several difficult
situations, such as brief vision outages and curves well
over 90-degrees.

6.2. Halibut-Shore Dataset

Fig. 13 shows both the vision-only and unified filter tra-
jectories, as well as GPS reference data, for the Halibut-
Shore dataset. GPS updates were used for additional cali-
bration during the first 36 m (20%) of the filter trajectory.
As shown in the trajectory plot in Fig. 13, DSLAM and
the unified filter were both very successful at navigating
this terrain.

For this dataset, both the vision-only and filter trajectories
were accurate to within a few meters at all times. This ac-
curacy is partly due to the rocky features being perfectly
stationary (unlike trees or grass, which often have small
motions due to wind that cause measurement noise). The
rocky terrain provided an abundance of high-contrast fea-
tures which were guaranteed not to move, allowing accu-
rate matching of features to existing landmarks within the
map.

Fig. 13: DSLAM and unified filter-calculated trajectories
for the Halibut-Shore dataset, which was collected while
walking on rocky terrain.

7. DRIVING TESTS

Fig. 14 shows both the vision-only and unified filter tra-
jectories, as well as GPS reference data, for the Cam-
bridgeport dataset. The initial calibration included GPS
updates for the first 275 m (7.5%) of the trajectory and a
full 360-degree circle while in GPS coverage to help cali-
brate the inertial sensor. The EVS metrics for this dataset
are given in Table 1.

For the driving tests, the camera and IMU were fixed
rigidly to the windshield of a passenger car. This led
to smooth motions of the camera and less “noise” in the
IMU compared to the dynamics of walking and holding
the camera unsteadily. This resulted in the IMU being
more reliable for the Cambridgeport dataset than either
of the Halibut datasets.

7.1. Navigation Performance

Due to the improved IMU accuracy when collecting data
using the car, the threshold for vision frame acceptance
by the unified filter could be set especially high, meaning
vision updates with higher effective uncertainties were
not used. The DSLAM and filter trajectories register er-
rors in different locations, indicating that the filter is suc-
cessfully rejecting the majority of the erroneous vision
frames, improving the accuracy of the filter.

Especially with the unified navigation filter, the system
exhibited consistent performance while navigating re-



Fig. 14: DSLAM and unified filter-calculated trajectories
for the Cambridgeport dataset, which was collected while
driving in an urban environment.

peated turns and moderate velocities. These motions are
more consistent with those planned for hoppers, with ex-
pected velocities in the range of 5-20 m/s, despite occur-
ring in a different environment and operational context.
These tests demonstrate that the navigation system is ca-
pable of accurately navigating within this range of mo-
tion, which is an important step toward preparing for a
future flight demonstration of the system.

7.2. Elevation Profiles

Fig. 15a shows the calculated elevation profiles for the
Cambridgeport trajectories, where the filter received a
bad altitude calibration from GPS. The system was sta-
tionary for the first 120 seconds, and then the calibra-
tion loop, which was conducted on a level surface, was
completed after about 200 seconds. This means the sen-
sors are known to have remained at a very nearly con-
stant altitude during this time, although GPS is shown to
be drifting downward erroneously. This inaccurate GPS
drift causes the Z-axis accelerometer to become incor-
rectly calibrated, leading to the system steadily drifting
downward throughout the trajectory.

Fig. 15b shows the elevation profile of the same tra-
jectory calculated using additional altitude updates from
the barometric altimeter on the IMU interface board.
Including even these uncertain altitude updates signifi-
cantly improves the accuracy of the navigation filter. Al-
though barometric altimetry is unavailable on airless bod-
ies such as the Moon, a laser altimeter could provide
similar updates at higher precision, constraining altitude
drift.

8. CONCLUSIONS & FUTURE WORK

The testbed system produces promising results, espe-
cially given its early stage of development. Even when

using the low-grade sensors intended for preliminary de-
velopment, the system does a very good job of navigating
demonstration trajectories in a variety of environments.
The effects of many of the observed current performance
issues could be mitigated by upgrading the IMU to a
model more likely to fly onboard a planetary exploration
mission.

Section 6 presented results of tests conducted walking in
outdoor environments. Walking on uneven terrain caused
large disturbances, but the system was able to navigate
the majority of these situations with reasonable accuracy
(less than 5% final positioning error with respect to dis-
tance traveled). This suggests that the navigation system
may be capable of handling moderate disturbances com-
parable to those experienced by a hopper.

Section 7 presented results of tests conducted while driv-
ing in an urban environment, where the system success-
fully navigated repeated corners and moderate velocities
throughout the test run. The unified system did especially
well in these tests, due to the smoother dynamics of the
car as opposed to the pedestrian, achieving navigation ac-
curacies of less than 1% error in final position with re-
spect to total distance traveled. This suggests that if the
vehicle dynamics of a hopper can be kept fairly steady,
navigation of long-distance hops in moderately feature-
rich environments is feasible.

The success of the various testbed demonstrations estab-
lish the system at NASA Technology Readiness Level
(TRL) 4∗, and supports additional development of the
system. This will involve re-testing the system with more
accurate truth data to better determine performance lim-
itations and integrating the system with a flight vehicle
for open-loop flight tests, advancing the system to TRL
5†. Possible future closed-loop testing onboard a terres-
trial rocket would further advance the system to TRL 6‡,
enabling selection of the system by a flight program.
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