

Content

- **≻**Introduction
- ➤ Conceptual design
- **≻**Challenges
- ➤ Specific payloads

-www.qb50.eu-

-www.qb50.eu-

QB50:

- First network of CubeSats
- ➤ 40 (+10 IOD) CubeSats sequentially deployed at an initial altitude of 320 km
- ➤ Each CubeSat will perform in-situ measurements of atmospheric parameters

-www.qb50.eu-

QB50:

First network of CubeSats

➤ 40 (+10 IOD) CubeSats sequentially deployed at an initial altitude of 320 km

➤ Each CubeSat will perform in-situ measurements of atmospheric parameters

➤ Launch together in Spring 2015

SHTIL 2.1

Context

-Scenario time line-

In addition of the main QB50 payload, the Re-entry CubeSardemonstrator will:

► Be deployed at the same time with the other QB50 CubeSats

In addition of the main QB50 payload, the Re-entry CubeSat

demonstrator will:

- Be deployed at the same time with the other QB50 CubeSats
- ➤ Based on the three unit CubeSat standard 100x100x340 mm

340 mm

In addition of the main QB50 payload, the Re-entry CubeSat demonstrator will:

- Be deployed at the same time with the other QB50 CubeSats
- Based on the three unit CubeSat standard 100x100x300 mm
- Provide Re-entry flight data until the max heating point (>50 km)
- No debris should reach the ground (DRAMA code: Debris Risk Assessment and Mitigation Analysis)

Scientific opportunities for low-cost re-entry platforms

-Affordable platform for research oriented re-entry study-

Ablation test in Plasmatron for the YES 2 capsule

Scientific opportunities for low-cost re-entry platforms

-Affordable platform for research oriented re-entry technology-

- Field of expertise at VKI in experiments and simulations: YES2, Expert, IXV
- Flight experiments for validation of numerical simulations and ground tests
- Characterization of TPS materials in flight conditions
- Re-entry Challenges & Solutions:
 - Deorbiting
 - Stability and trimming
 - Max heating/TPS
 - Communication blackout
 - Disintegration

Conceptual design

-Result for the proposed geometry with uncertainty analysis-

Conceptual design

-Result for the proposed geometry with uncertainty analysis-

Reference: QARMAN proposal for QB50 call

Entity	Energy needed (in Whr, including 30% margin)
Functional unit (OBC, EPS)	1.09
Payload + amplifier	6.28
Telecommunication system (Antenna + Iridium transceiver)	1.25
Total	8.62

NanoPower BP4 battery needed to survive for the 10 min mission (including the 45 min margins)

8.02

Conceptual design

-Result for the proposed geometry with uncertainty analysis-

Reference: QARMAN proposal for QB50 call

Subsystem	Mass (in g)	Margin	Mass with margin (in g)	
Heat shield	300	20%	360	
Functional unit +Structure +telecommunication system	1411	20%	1693	
Deorbiting and stability system	240 25		300	
Functional unit	1951	20%	2353	
Payload	-	-	647	

-TPS sizing-

-TPS sizing-

Plasmatron tests(Material characterisation)

[Asma, C. O., et al., 2010]. Infrared Thermography Measurements on Ablative Thermal Protection Systems for Interplanetary Space Vehicles. 10th QIRT, Quebec, Canada, 2010.

-TPS sizing-

By considering:

- Recession rate
- 1d conduction
- 3D CFD
- No safety margins

Future work: use of EADS codes for more accurate sizing

-Stability of the vehicle-

Position of the center of pressure (CP) evaluated by the Modified Newtonian Theory code

-Stability of the vehicle-

Insulation cover for thermal constrains (Nextel 312: 2 mm thick)

> **Bonding** material

for mechanical constrains

9th International Planetary Probe Workship - Toulouse, June 16-22 2012 -

-Deorbiting system-

Quantify the impact of the deorbiting system on the whole trajectory within the mission constrains.

-Deorbiting system-

Quantify the impact of the deorbiting system on the whole trajectory within the mission constrains.

- Limit the heat load within heat flux constrains (our case)
- Collect data from a specific phenomenon or range of altitude
- Any specific mission (where you can associate an efficiency coefficient)

-Deorbiting system-

Quantify the impact of the deorbiting system on the whole trajectory within the mission constrains.

Fast aerodynamic database building (Free molecular

- + Bridging function
- + Modified Newtonian

>140.000 points)

6 DoF and round earth trajectory code

Trajectory evaluation (Heat flux...)

Optimizer (genetic algorithm) 40 initial individuals 100 generations

Methodology employed for the optimization

-Deorbitation system-

Several parameters are affected within the optimization process:

- Geometry of the deorbitation system (size, orientation of the panels)
- Altitude to deploy the deorbitation system
- Altitude to jettison the deorbitation system

-Thermal management-

-Thermal management-

After a review of the possible side panels configurations, the final configuration is proposed as following: Standard Aluminium panel (thickness of 1.5 mm) + 1.6 mm of thermal blankets made out of 3M Nextel 312 500 Target 400 Heat load (in kJ/m2) 300 200 100 0 20 100 40 60 80 120 Altitude (in km) 3M Nextel 312 thermal Heat load on a side panel versus blanket sample time during re-entry

-Telecommunication system-

Maximum of 10 minutes for the Re-entry and the vehicle will not survive:

➤ Needs to transmit the data before disintegration

Utilization of the Iridium constellation:

➤ Permanent coverage of all the trajectory (by 4-6 satellites)

-Ablation characterization: example of a recession sensor-

Ultrasound recession sensor

McGunigle, Richard D. and Michael Jennings, "Ultrasonic Ablation Recession Measurement System," *Proceedings of the 21st International Instrumentation Symposium*, Philadelphia, Penn- sylvania, 1975.

ARAD recession sensor (NASA Ames)

Light pipe gage

Ref: G.K. Noffz and M. P. Bowman, 1996, "Design and Laboratory Validation of a Capacitive Sensor for Measuring the Recession of a Thin-Layered Ablator" NASA TM 4777

-Emission spectroscopy-

Investigated Challenge	Parameter to measure	Sensor	Total Mass [kg]	Power [mW h]	Data Size / Meas. [bit]	Phase	Total Data Size [KB/ Phase]
TPS Ablation	Recession	2 x Recession Sensor	0,004	1.67	10	3	3.0
TPS Efficiency	Temperature Distribution	8 x TC	0,031	1.67	14	3	16.8
TPS & Environment	Pressure	2 x Pressure Sensor	0.060	8.33	10	3	3.0
Stability	Pressure	4 x Pressure Sensor	0,060	840	10	2	302.4
Rarified Flow Conditions	Low Pressure / Vacuum	1 x Vacuum Sensor	0,011	756	10	1	151.2
				756		2	151.2
Shear Force, Laminar to		2 x Preston Tube 0.120 16.67 10		2520		2	907.2
Turbulence Transition	Skin Friction		3	3.0			
Off-Stagnation Temperature	Temperature	10 v TC	10 x TC 0,021	16.8	14	2	211.68
Evolution	remperature	10 % 10		1.67	14	3	21.0
Aerothermodyna mic Environment	Species	1 x Spectrometer	0,084	6250	28	3	3.5
	Total		0.391	6250	338		

Acknowledgement

The research leading to these results has received funding from the European Community's Seventh Framework Program ([FP7/2007-2013]) under grant agreement no 284427 for the QB50 Project

Stability system

-How can a brick fly?-

Future work: PASDA code (Parachute System Design and Analysis Tool)

9th International Planetary Probe Workship - Toulouse, June 16-22 2012 -

Surface area

(in cm²)

vehicle (in m)

Drag coefficient

increment

Structural consideration

-CATIA FEM module-

