IR&D Studies of Light Weight Ablator for Future Reentry Capsule Heatshield

IHI AEROSPACE Co., Ltd. Kenichi HIRAI 2012.6.21

JAXA
Yuichi ISHIDA, Toshio OGASAWARA, Takuya
AOKI, Tetsuya YAMADA, Kazuhisa FUJITA,
Toshiyuki SUZUKI

1.Objective of this study

[Source] Laub & Venkatapathy: "Thermal Protection System Technology Facility Needs for Demanding Future Planetary Missions", International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, (2003)

The Possible Future Directions

2. Our Strategy(1/2)

- > **Expensive**
- > Long Delivery Time (EL)
- > Sustainability
- **2.Persuit of unique LWA**
- > Unique Preforms(RVC)
- I don't want to imitate PICA
- 3. Preform microstructure
 Tailoring for successful
 JAXA PI impregnation

Development of Domestic RVC JFOAM

Resin Impregnation

Phenolic

SC-1008

Polyimide

JAXA Original

LWA

 $(0.25 < \rho < 0.4)$

2. Our Strategy(2/2)

3. Overview (1/3) candidate carbon preforms

<u>CBCF</u>

Carbon Bonded Carbon Fiber

Chop/Milled Fibers
Connected by
Phenolic Resin

Carbon Preform (ρ<0.2)

[Source]: Lachaud et al: "Validation of a Volume-Averaged Fiber-Scale Model for the Oxidation of a Carbon-Fiber Preform", AIAA 42nd Thermophysics Conf 2011 (Extended Abstract).

RVC
Reticulated
Vitreous Carbon

Grafoam(ρ=0.16) SEM photo

3. Overview (2/3) JAXA Polyimide Resin Impregnation

3. Overview (3/3) JAXA Polyimide Raw Material Cost

4.Validation of Resin Impregnation Process Imported Preform based LWA 9 Fabrication(1/6)

Candidate Carbon Preforms

	Bulk Density [g/cm ³]
Imported RVC (Grafoam FPA-10)	0.18
Imported CBCF (CALCARB 18-2000)	0.19
Domestic RVC (JFOAM-1, -2, -3)	0.15, 0.21, 0.28
Domestic CBCF	NA

Fabrication Matrix of LWA

	Polyimide Resin	Phenolic Resin
Imported RVC (Grafoam FPA-10)	NA	0
Imported CBCF (CALCARB 18-2000)	0	0
Domestic RVC (JFOAM-1, -2, -3)	0	0
Domestic CBCF	NA	NA

RVC: Reticulated Vitreous Carbon

CBCF: Carbon Bonded Carbon Fiber

LWA: Low Weight Ablator

4.Validation of Resin Impregnation Process Imported Preform based LWA 10 Fabrication(2/6)

CBCF/Preform

Size: 22cm×22cm×5cm

Weight: 473.4g

Bulk Density: 0.196g/cm³

CBCF/PI LWA

Size: 21.98×21.99×4.65cm

Weight: 799.7g

Bulk Density: 0.356g/cm³

4.Validation of Resin Impregnation Process Imported Preform based LWA 11 Fabrication(3/6)

Validation of Resin Impregnation Process **Imported Preform based LWA** Fabrication(4/6)

Data Scatter is small, so resin impregnation

Residual carbon ratio [%] within impregnated "resin +solvent"

 $W_{final} - W_{preform}$ W_{initial} – W_{preform}

Charred Resin

Resin+Solvent

65% : Same as

Grafoam / phenolic

4. Validation of Resin Impregnation Process Imported Preform based LWA ¹³ Fabrication(5/6)

4. Validation of Resin Impregnation Process

Imported Preform based LWA Fabrication(6/6)

[Source] Tran et al: "Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions, NASA TM 110440, (1997)

4. Validation of Resin Impregnation Process

Imported Preform based LWA Fabrication(7/7)
Temperature Response of CALCARB/PI LWA

5.Domenstic RVC based LWA Development Development of JFOAM(1/5) 16

Current
microstructure of
JFOAM is much
coarser than
existing imported
CBCF/RVC!

SEM Photographs of various kinds of lightweight carbon preforms (Our RVC's are designated as JFOAM-1(density=0.16g/cm3))

5.Domenstic RVC based LWA Development Development of JFOAM(1/5)17

Similar Properties as Existing Carbon Preforms

☐ Imported Grafoam FPA-10

■ Domestic JFOAM

5.Domenstic RVC based LWA Development Development of JFOAM(1/5) 18

JFOAM bulk density vs thermal conductivity

[Source] Tran et al: "Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions, NASA TM 110440, (1997)

5.Arcjet Tests of LWA(1/6)

	CW Heat Flux [MW/m ²]	Impact Pressure [KPa]	Heating Time [s]
#1	1.8	4.4	30
#2	3.4	13.7	30
#3	6.0	19.6	30

5.Arcjet Tests of LWA(3/6)

5.Arcjet Tests of LWA(4/6) PICA Recession Characteristics

Empirical Expression for Surface Recession Rate of PICA

Hwang, et al., Race Towards Launch: Qualifying the Mars Science Laboratory Heatshield in under Ten Months, ICCE-17(17th International Conference on Composite/ NANO Engineering, (2009)

5.Arcjet Tests of LWA(5/6) Recession of JFOAM/PI LWA

Our LWA's surface recession rates are comparative to PICA, when the density values are around 0.36!

5.Arcjet Tests of LWA(6/6) Recession of JFOAM/PI LWA

For the moment, char density values of RVC/LWA's are somewhat ambiguous, however, recession mass flux values of RVC/LWA seem to be almost constant. Are they independent of the microstructures?

5. Conclusions & Future Works

- ◆ We are currently conducting IR&D activity towards domestic RVC/LWA with density 0.3-0.4g/cm3 for future reentry missions.
- From the experiences of fabricating LWA panels of 22cm x 22cm x 5cm and density measurements, we have confirmed that our resin-impregnation process for LWA is quite stable and reliable.
 - CALCARB/PI <±3%
 - ► Grafoam/Ph <±3%
- ◆ The insulative performance of current LWA's is judged acceptable.
- But the Arcjet tests revealed signs of spallation-driven recession especially for our domestic RVC/LWA, which may be attributed to the coarse microstructures peculiar to our current RVC's.
- ◆ Therefore, further modifications for our RVC are currently underway in order to improve recession resistance.
 - > Fine Cell Structures

The Possible Future Directions Fine Cell Structured JFOAM

JFOAM (ρ0.20)

Thank You for Your Attention!

Any Questions?